DOI QR코드

DOI QR Code

Feature Analysis of Different In Vitro Antioxidant Capacity Assays and Their Application to Fruit and Vegetable Samples

In Vitro 항산화능 측정법에 대한 특징 분석과 채소.과일 시료에 대한 적용 사례 고찰

  • Kim, Min-Jung (Dept. of Food and Nutrition, Kyungnam University) ;
  • Park, Eun-Ju (Dept. of Food and Nutrition, Kyungnam University)
  • 김민정 (경남대학교 식품영양학과) ;
  • 박은주 (경남대학교 식품영양학과)
  • Received : 2011.04.20
  • Accepted : 2011.06.23
  • Published : 2011.07.31

Abstract

Reactive oxygen species (ROS), including singlet oxygen (${O_2}^1$), superoxide anion radical ($O_2{\cdot}^-$), hydroxyl radical ($HO{\cdot}$), peroxyl radical ($ROO{\cdot}$), hydrogen peroxide ($H_2O_2$), and hypochlorous (HOCl), are generated as byproducts of normal cellular metabolism. ROS induce damage to many biological molecules, such as lipids, proteins, carbohydrates, and DNA. It is widely believed that some degenerative diseases caused by ROS can be prevented by the high intake of fruits and vegetables due to their antioxidant activities. Recently, research on natural antioxidants has become increasingly active in various fields. Several assays have been developed to measure the total antioxidant capacity of antioxidants in fruits and vegetables in vitro. These assays include those for DPPH radical scavenging activity, SOD-like activity, total polyphenol content, oxygen radical absorbance capacity, reducing power, trolox equivalent antioxidant capacity (ABTS assay), single-cell gel electrophoresis (comet assay), and a cellular antioxidant activity assay. Because different antioxidant compounds may act through different mechanisms in vitro, no single assay can fully evaluate the total antioxidant capacity of foods. Due to the complexity of the composition of foods, it is important to be able to measure antioxidant activity using biologically relevant assays. In this review, recently used assays were selected for extended discussion, including a comparison of the advantages and disadvantages of each assay and their application to fruits and vegetables.

건강한 삶에 대한 현대인의 관심이 나날이 고조되고 있으며, 이에 따라 노화와 질병의 예방에 효과가 있는 항산화제의 연구가 활발히 이루어지고 있다. 특히 천연물이나 식품을 소재로 한 식이성 항산화제에 대한 연구는 꾸준히 증가하고 있는 추세이며, 천연물의 소재나 연구 분야의 폭이 매우 넓다. 따라서 다양한 식품 소재의 항산화능을 조사할 수 있는 측정법의 중요성이 크게 부각되고 있다. 현재 약용 식물이나 상용 채소, 과일을 시료로 하여 여러 가지 radical이나 target molecule에 대한 항산화능을 측정할 수 있는 다수의 생체외(in vitro) 측정법이 사용되고 있다. 이에 본 총설에서는 널리 사용되고 있는 항산화능 측정법의 특징을 분석하고 적용 사례를 검토하였다. 식품의 구성 성분은 단일물질이 아닌 복합체로 구성되어 있으므로 하나의 측정법으로 항산화능을 평가할 수가 없다. 그러므로 채소와 과일을 포함한 여러가지 식물성 식품 추출물의 항산화 활성을 정확히 측정하기 위해서는 각 실험에 사용되는 radical과 기전(mechanism), 실험 조건(온도, pH, 실험기기, 시료추출방법, 소요 시간, 비용) 등을 고려하여 적절히 수행되어야 할 것이다. 그러나 이들 측정법의 다양성과 사용 단위의 차이로 인해 각 시료의 항산화능을 객관적으로 비교하는데 어려움이 있는 실정이다. 따라서 향후 항산화능 측정법의 표준화와 표현 단위의 통일이 절실히 요구된다. 또한 in vitro에서 항산화능을 나타내는 채소, 과일 등의 생체 내 활성은 다양한 biomechanism과 polymerphism으로 인해 그 효과를 예측하기가 매우 어렵다. 따라서 in vitro에서의 항산화능 screening 결과를 바탕으로 in vivo에서의 그 효과를 검증하는 연구가 부가적으로 시행되어야 할 것이라 사료된다.

Keywords

References

  1. Droge W. 2001. Free radicals in the physiological control of cell function. Physiol Rev 82: 47-95.
  2. Halliwell B, Aeschbach R, Loliger J, Aruoma OI. 1995. The characterization of antioxidants. Food Chem Toxicol 33: 601-617. https://doi.org/10.1016/0278-6915(95)00024-V
  3. Ames BN, Gold LS, Willet WC. 1995. The causes and prevention of cancer. Proc Natl Acad Sci USA 92: 5258-5265. https://doi.org/10.1073/pnas.92.12.5258
  4. Ji LL. 1993. Antioxidant enzyme response to exercise and aging. Med Sci Sport Exercise 25: 225-231.
  5. Gurr MI. 1996. The oxidation hypothesis of coronary heart disease (CAD). Nutrition Newsletters 5: 10-15.
  6. Based on the Web of Knowledge search on articles containing the word antioxidant or antioxidants.
  7. Ishige K, Schubert D, Sagara Y. 2001. Flavonoids protect neuronal cells from oxidant stress by three distinct mechanisms. Free Radic Biol Med 30: 433-446. https://doi.org/10.1016/S0891-5849(00)00498-6
  8. Huang D, Ou B, Prior RL. 2005. The chemistry behind antioxidant capacity assays. J Agric Food Chem 53: 1841-1856. https://doi.org/10.1021/jf030723c
  9. Shi J, Gong J, Liu J, Wu X, Zhang Y. 2009. Antioxidant capacity of extract from edible flowers of Prunus mume in China and its active components. LWT-Food Sci Technol 42: 477-482. https://doi.org/10.1016/j.lwt.2008.09.008
  10. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1198-2000.
  11. Wisanu T, Boonsom L, Saisunee L. 2009. Flow injection analysis of total curcuminoids in turmeric and antioxidant capacity using 2,2-diphenyl-1-picrylhydrazyl assay. Food Chem 112: 494-499. https://doi.org/10.1016/j.foodchem.2008.05.083
  12. Shimada KK, Fujikawa KY, Nakamura T. 1992. Antioxidative properties of xanthan on autoxidation of soybean oil in cyclodextrin. J Agric Food Chem 40: 945-948. https://doi.org/10.1021/jf00018a005
  13. Papa ND, Tatjana S, Alain C. 2009. Study on chemical composition, antioxidant and anti-inflammatory activities of hot water extract from Picea mariana bark and its proanthocyanidin-rich fractions. J Food Chem 113: 897-902. https://doi.org/10.1016/j.foodchem.2008.08.016
  14. Mensor LL, Menezes FS, Leitao GG, Reis AS, Santos TC, Coube CS, Leitao SG. 2001. Screening of brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res 15: 127-130. https://doi.org/10.1002/ptr.687
  15. Schwarz K, Bertelsen G, Nissen LR, Gardner PT, Heinonen MI, Hopia A. 2001. Investigation of plant extracts for the protection of processed foods against lipid oxidation. Comparison of antioxidant assay based on radical scavenging, lipid oxidation and analysis of the principal antioxidant compounds. Eur Food Res Technol 212: 319-328. https://doi.org/10.1007/s002170000256
  16. Jeong SM, Kim SY, Park HR, Lee SC. 2004. Effect of farinfrared radiation on the activity of extracts from Citrus unshiu peels. J Korean Soc Food Sci Nutr 33: 1580-1583. https://doi.org/10.3746/jkfn.2004.33.9.1580
  17. Sanchez M. 2002. Review: Method used to evaluate the free radical scavenging activity in food and biological systems. Food Sci Tech Int 8: 121-137. https://doi.org/10.1177/1082013202008003770
  18. Folin O, Denis W. 1912. On phosphotungasticphosphomolybdic compounds as color reagents. J Biol Chem 12: 239-249.
  19. Ronald LP, Xianli W, Karen S. 2005. Standardized method for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53: 4290-4302. https://doi.org/10.1021/jf0502698
  20. Guo J, Wang MH. 2007. Antioxidant and antidiabetic activities of Ulmus davidiana extracts. Food Sci Biotechnol 16: 55-61.
  21. Park YG, Kim SH, Choi SH, Han JH, Chung HG. 2008. Changes of antioxidant capacity, total phenolics, and vitamin C contents during Rubus coreanus fruit ripending. Food Sci Biotechnol 17: 251-256.
  22. Proteggente AR, Pammala AS, Pagamga G, Van BL, Wagner E, Wiseman S, Van DPF, Dacombc C, Rice-Evans CA. 2002. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radic Res 36: 217-233. https://doi.org/10.1080/10715760290006484
  23. Shela G, Milena C, Ivana M, Ratiporn H, Park YS, Jung ST, Kazutaka Y, Alma LMA, Elena K, Simon T. 2004. Characterization of antioxidant compounds in Jaffa sweeties and white grapefruits. Food Chem 84: 503-510. https://doi.org/10.1016/S0308-8146(03)00127-4
  24. Siddhuraju P, Mohan PS, Becker K. 2002. Studies on the antioxidant activity of Indian Laburnum (Cassia fistula L.): A preliminary assessment of crude extracts from stem bark, leaves, flowers, and fruit pulp. Food Chem 79: 61-67. https://doi.org/10.1016/S0308-8146(02)00179-6
  25. Delange RJ, Glazer AN. 1989. Phycoerythrin fluorescencebased assay for free radicals: a screen for biologically relevant protective agent. Anal Biochem 177: 300-306. https://doi.org/10.1016/0003-2697(89)90056-0
  26. Cao G, Alessio HM, Cutler RG. 1993. Oxygen-radical absorbance capacity assay for antioxidants. Free Radic Biol Med 14: 303-311. https://doi.org/10.1016/0891-5849(93)90027-R
  27. Ou B, Hampsch-Woodill M, Prior RL. 2001. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49: 4619-4926. https://doi.org/10.1021/jf010586o
  28. Niki E. 1990. Free radical initiators as source of water- or lipid-soluble peroxyl radicals. Methods Enzymol 186: 100-108. https://doi.org/10.1016/0076-6879(90)86095-D
  29. Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL. 2002. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J Agric Food Chem 50: 4437-4444. https://doi.org/10.1021/jf0201529
  30. Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard, L, Hampsch-Woodill M, Huang D, Ou B, Jacob R. 2003. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J Agric Food Chem 52: 3273-3279.
  31. Ou B, Hampsch-Woodill M, Flanagan J, Deemer EK, Prior RL, Huang D. 2002. Novel fluorometric assay for hydroxyl radical prevention capacity using fluorescein as the probe. J Agric Food Chem 50: 2772-2777. https://doi.org/10.1021/jf011480w
  32. Ghiselli A, Serafini M, Maiani G, Azzini E, Ferro-Luzzi A. 1995. A fluorescence-based method for measuring total plasma antioxidant capacity. Free Radic Biol Med 18: 29-36. https://doi.org/10.1016/0891-5849(94)00102-P
  33. Kumaran A, Karunakaran RJ. 2007. In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT-Food Sci Technol 40: 344-352. https://doi.org/10.1016/j.lwt.2005.09.011
  34. Duh PD. 1998. Antioxidant activity of burdock (Arctium lappa Linne): Its scavenging effect on free radical and active oxygen. J Am Oil Chem Soc 75: 455-461. https://doi.org/10.1007/s11746-998-0248-8
  35. Chou ST, Chao WW, Chung YC. 2003. Antioxidative activity and safety of 50% ethanolic red bean extract (Phaseolus radiatus L. var. Aurea). J Food Sci 68: 21-25. https://doi.org/10.1111/j.1365-2621.2003.tb14108.x
  36. Meir S, Kanner J, Akiri B, Hadas SP. 1995. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. J Agric Food Chem 43: 1813-1815. https://doi.org/10.1021/jf00055a012
  37. Marklund S, Marklund G. 1974. Involvement of superoxide anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 468-474.
  38. The Korean society of Food Science and Nutrition. 2000. Handbook of experiments in food science and nutrition. Hyoil, Seoul, Korea. p 652-654.
  39. Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner A. 1993. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 84: 407-412. https://doi.org/10.1042/cs0840407
  40. Rice-Evans C, Miller NJ. 1994. Total antioxidant status in plasma and body fluids. Meth Enzymol 234: 279-293. https://doi.org/10.1016/0076-6879(94)34095-1
  41. Re R, Pellegrinni N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  42. Awika JM, Rooney LW, Wu X, Prior RL, Cineros-Zevallos L. 2003. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J Agric Food Chem 51: 6657-6662. https://doi.org/10.1021/jf034790i
  43. Ronald LP, Guohua C. 1999. In vivo total antioxidant capacity: comparison of different analytical method. Free Radic Biol Med 27: 1173-1181. https://doi.org/10.1016/S0891-5849(99)00203-8
  44. Lemanska K, Szymusiak H, Tyrakowska B, Zielinski R, Soffer AEMF, Rietjens IMCM. 2001. The influence of pH on the antioxidant properties and the mechanisms of antioxidant action of hydroxyflavones. Free Radic Biol Med 31: 869-881. https://doi.org/10.1016/S0891-5849(01)00638-4
  45. Ostling O, Johanson KJ. 1984. Microgel electrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123: 291-298. https://doi.org/10.1016/0006-291X(84)90411-X
  46. Gillian RW, Valerie JM, Stephen D. 2008. The use of the comet assay in the study of human nutrition and cancer. Mutagenesis 23: 153-162. https://doi.org/10.1093/mutage/gen003
  47. Koeffler HP, McCormick F, Denny C. 1991. Molecular mechanisms of cancer. West J Med 155: 505-514.
  48. Collins AR. 2004. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26: 249-261. https://doi.org/10.1385/MB:26:3:249
  49. Duthie SJ, Pirie L, Jenkinson, AM, Narayanan S. 2002. Cryopreserved versus freshly isolated lymphocytes in human biomonitoring: endogeneous and induced DNA damage, antioxidant status and repair capability. Mutagenesis 17: 221-214.
  50. Hininger I, Chollat-Namy A, Sauvaigo S, Osman M, Faure H, Cadet J, Favier A, Roussel AM. 2004. Assessment of DNA damage by comet assay on frozen total blood: method and evaluation in smokers and non-smokers. Mutat Res 558: 75-80. https://doi.org/10.1016/j.mrgentox.2003.11.004
  51. Maria D, Andrew RC. 2008. The comet assay in human biomonitoring: gene-environment interactions. Mutagenesis 23: 191-205. https://doi.org/10.1093/mutage/gen007
  52. Liu RH. 2004. Potential synergy of pytochemicals in cancer prevention: mechanism of action. J Nutr 134: 3479S-3485S.
  53. Wolfe KL, Liu RH. 2008. Structure-activity relationships of flavonoids in the cellular antioxidant activity assay. J Agric Food Chem 56: 8404-8411. https://doi.org/10.1021/jf8013074
  54. Halliwell B, Whiteman M. 2004. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? British J Pharmacol 142: 231-255. https://doi.org/10.1038/sj.bjp.0705776
  55. Wolfe KL, Liu RH. 2007. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J Agric Food Chem 55: 8896-8907. https://doi.org/10.1021/jf0715166
  56. Musonda CA, Helsby N, Chipman JK. 1997. Effects of quercetin on drug metabolizing enzymes and oxidation of 20,7-dichlorofluorescin in HepG2 cells. Hum Exp Toxicol 16: 700-708. https://doi.org/10.1177/096032719701601202
  57. Montoliu C, Sancho-Tello M, Azorin I, Burgal M, Vallés, S, Renau-Piqueras J, Guerri C. 1995. Ethanol increases cytochrome P4502E1 and induces oxidative stress in astrocytes. J Neurochem 65: 2561-2570.
  58. Frenkel K, Gleichauf C. 1991. Hydrogen peroxide formation by cells treated with a tumor promoter. Free Radic Res Commun 12-13: 783-794.
  59. Huang X, Frenkel K, Klein CB, Costa M. 1993. Nickel induces increased oxidants in intact cultured mammalian cells as detected by dichloro-fluorescin fluorescence. Toxicol Appl Pharmacol 120: 29-36. https://doi.org/10.1006/taap.1993.1083
  60. Lautraite S, Bigot-Lasserre D, Bars R, Carmichael N. 2003. Optimization of cell-based assays for medium throughput screening of oxidative stress. Toxicol in Vitro 17: 207-220. https://doi.org/10.1016/S0887-2333(03)00005-5
  61. Wolfe KL, Kang X, He X, Dong M, Zhang Q, Liu RH. 2008. Cellular antioxidant activity of common fruits. J Agric Food Chem 56: 8418-8426. https://doi.org/10.1021/jf801381y
  62. Afzal M, Matsugo S, Sasai M, Xu B, Aoyama K, Takwuchi T. 2003. Method to overcome photoreaction, a serious drawback to the use of dichlorofluorescin in evaluation of reactive oxygen species. Biochem Biophys Res Commun 304: 619-624. https://doi.org/10.1016/S0006-291X(03)00641-7
  63. Marchesi E, Rota C, Fann YC, Chignell CF, Mason RP. 1999. Photoreduction of the fluorescent dye 2'-7'-dichlorofluorescein: a spin trapping and direct electron spin resonance study with implication for oxidative stress measurements. Free Radic Biol Med 26: 148-161. https://doi.org/10.1016/S0891-5849(98)00174-9
  64. Lemanska K, Szymusiak H, Tyrakowska B, Zielinski R, Soffers AEMF, Rietjens IMCM. 2001. The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radic Biol Med 31: 1287-1312. https://doi.org/10.1016/S0891-5849(01)00724-9
  65. Yoo KM, Kim DO, Lee CY. 2007. Evaluation of different methods of antioxidant measurement. Food Sci Biotechnol 16: 177-182.
  66. Hong W, James AJ. 1999. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27: 612-616. https://doi.org/10.1016/S0891-5849(99)00107-0
  67. Liu RH, Finley J. 2005. Potential cell culture models for antioxidant research. J Agric Food Chem 53: 4311-4314. https://doi.org/10.1021/jf058070i
  68. Holley AE, Cheeseman KH. 1993. Measuring free radical reactions in vivo. Br Med Bull 49: 494-505. https://doi.org/10.1093/oxfordjournals.bmb.a072626
  69. Frankel EN, Meyer AS. 2000. The problems of using one dimensional methods to evaluate multifunctional food and biological antioxidants. J Sci Food Agric 80: 1925-1941. https://doi.org/10.1002/1097-0010(200010)80:13<1925::AID-JSFA714>3.0.CO;2-4
  70. Rowena Grace OR, Djanna FC, Inacrist MG. 2009. Phenolic content and antioxidant capacity of Philippine sweet potato (Ipomoea batatas) varieties. Food Chem 113: 1133-1138. https://doi.org/10.1016/j.foodchem.2008.08.088
  71. Kim JI, Jang HS, Kim JS, Sohn HY. 2009. Evaluation of antimicrobial, antithrombin, and antioxidant activity of Dioscorea batatas Decne. Kor J Microbiol Biotechnol 37: 133-139.
  72. Stoilova I, Krastanov A, Stoyanova A, Denev P, Gargova S. 2007. Antioxidant activity of a ginger extract (Zingiber officinale ). Food Chem 102: 764-770. https://doi.org/10.1016/j.foodchem.2006.06.023
  73. Zao X, Song KB, Kim MR. 2004. Antioxidant activity of salad vegetables grown in Korea. J Food Sci Nutr 9: 289-294. https://doi.org/10.3746/jfn.2004.9.4.289
  74. Kim JY, Lee CR, Cho KH, Lee JH, Lee KT. 2009. Antioxidative and Lp-PLA2 inhibitory activities in 29 fruits and vegetables. Korean J Food Preserv 16: 512-517.
  75. Nont T, Aphiwat T, Nuansri R. 2008. Antioxidant and antibacterial activities of Nephelium lappaceum L. extracts. LWT-Food Sci Technol 41: 2029-2035. https://doi.org/10.1016/j.lwt.2008.01.017
  76. Choi SY, Cho HS, Kim HJ, Ryu CH, Lee JO, Sung NJ. 2006. Physicochemical analysis and antioxidative effects of wild grape (Vitis coignetiea) juice and its wine. Korean J Food Nutr 19: 311-317.
  77. Kim JY, Park SH, Lee KT. 2009. Sulforaphane content and antioxidative effect of cooked broccoli. J East Asian Soc Dietary Life 19: 564-569.
  78. Kim HJ, Ahn MS, Kim GH, Kang MH. 2006. Antioxidative and antimicrobial activities of Pleurotus eryngii extracts prepared from different aerial part. Korean J Food Sci Technol 38: 799-804.
  79. Kim KB, Yoo KH, Park HY, Jeong JM. 2006. Anti-oxidative activities of commercial edible plant extracts distributed in Korea. J Korean Soc Appl Biol Chem 49: 328-333.
  80. Jeong CH, Chun JY, Bae SH, Choi SG. 2007. Chemical components and antioxidative activities of Korean kiwi. J Agric Life Sci 41: 27-35.
  81. Gorinstein S, Jastrzebski Z, Leontowicz H, Leontowicz M, Namiesnik J, Najman K, Park YS, Cho JY, Bae JH. 2009. Comparative control of the bioactivity of some frequently consumed vegetables subjected to different processing conditions. Food Control 20: 407-413. https://doi.org/10.1016/j.foodcont.2008.07.008
  82. Shin YS, Lee JE, Yeon IK, Do HW, Cheung JD, Kang CK, Choi SY, Youn SJ, Cho JG, Kweon DJ. 2008. Antioxidative and antimicrobial activities of extracts with water and ethanol of oriental melon (Cucumis melo L. var makuwa Makino). J Korean Soc Appl Biol Chem 51: 194-199.
  83. Nencini C, Cavallo F, Capasso A, Franchi GG, Giorgio G, Micheli L. 2007. Evaluation of antioxidative properties of Allium species growing wild Italy. Phytother Res 21: 874-878. https://doi.org/10.1002/ptr.2168

Cited by

  1. The Effects of Gyejibokryeong-hwan (桂枝茯苓丸) for Wound Healing after Skin Suture vol.26, pp.2, 2016, https://doi.org/10.18325/jkmr.2016.26.2.29
  2. Antioxidant Activities of Hot Water Extract from Cornus walteri Wanger against Oxidative Stress Induced by tert-Butyl Hydroperoxide in HepG2 Cells vol.42, pp.10, 2013, https://doi.org/10.3746/jkfn.2013.42.10.1525
  3. Effect of Gami-Chunggisan on Antioxidant and Pro-Inflammatory Cytokine vol.29, pp.4, 2014, https://doi.org/10.6116/kjh.2014.29.4.69
  4. Anti-Oxidative and Anti-Diabetic Effects of Methanol Extracts from Medicinal Plants vol.44, pp.5, 2015, https://doi.org/10.3746/jkfn.2015.44.5.681
  5. Physicochemical Properties and Antioxidant Activity of Commercial Tomato Ketchup vol.30, pp.6, 2015, https://doi.org/10.7318/KJFC/2015.30.6.790
  6. Monitoring of Pesticide Residues and Risk Assessment for Fruits in Market vol.32, pp.2, 2013, https://doi.org/10.5338/KJEA.2013.32.2.142
  7. Quality Comparison of Commercial Cider Vinegars by Their Acidity Levels vol.44, pp.6, 2012, https://doi.org/10.9721/KJFST.2012.44.6.699
  8. subtropical fruits vol.22, pp.4, 2015, https://doi.org/10.11002/kjfp.2015.22.4.577
  9. Antioxidative and Antimicrobial Activities of Juice from Garlic, Ginger, and Onion vol.20, pp.1, 2013, https://doi.org/10.11002/kjfp.2013.20.1.134
  10. Antioxidant Activity of Methanol Extracts from Lactuca indica vol.19, pp.2, 2012, https://doi.org/10.11002/kjfp.2012.19.2.294
  11. Antioxidant and Antimicrobial Effects of Solvent Fractions from Smilax china L. Leaves vol.43, pp.10, 2014, https://doi.org/10.3746/jkfn.2014.43.10.1614
  12. Changes in Phenolic Composition, Antioxidant and Antidiabetic Properties of Jeju Citrus sudachi as Influenced by Maturity vol.25, pp.11, 2015, https://doi.org/10.5352/JLS.2015.25.11.1311
  13. Changes in Carotenoid and Anthocyanin Contents, as well as Antioxidant Activity during Storage of Lettuce vol.44, pp.9, 2015, https://doi.org/10.3746/jkfn.2015.44.9.1325
  14. Comparison of Bioactive Constituents and Biological Activities of Aronia, Blackcurrant, and Maquiberry vol.45, pp.8, 2016, https://doi.org/10.3746/jkfn.2016.45.8.1122
  15. The Effects of Artemisiae Iwayomogii Herba, Curcumae Radix, and Aurantii Fructus Immaturus Complex Extract (ACA) on Dyslipidemia-related Factor Expression and Anti-oxidation in HepG2 Cells vol.38, pp.3, 2017, https://doi.org/10.22246/jikm.2017.38.3.367
  16. Risk assessment of pesticide residues in fruits collected in Gyeonggi-do, Korea from 2006 to 2010 vol.16, pp.2, 2012, https://doi.org/10.7585/kjps.2012.16.2.085
  17. Quality Changes of Fresh Vegetable and Fruit Juice by Various Juicers vol.29, pp.3, 2014, https://doi.org/10.7841/ksbbj.2014.29.3.145
  18. Quality characteristics and antioxidant activity of Sulgidduk added with maquiberry powder vol.23, pp.7, 2016, https://doi.org/10.11002/kjfp.2016.23.7.945
  19. L. in Jeju vol.60, pp.4, 2017, https://doi.org/10.3839/jabc.2017.048
  20. 제2형 당뇨 마우스 모델에서 청혈플러스의 항고지혈 및 항산화효과 vol.30, pp.3, 2016, https://doi.org/10.15188/kjopp.2016.06.30.3.164
  21. 배를 이용한 발효식초의 품질특성 vol.23, pp.6, 2011, https://doi.org/10.11002/kjfp.2016.23.6.778
  22. 겉보리에서 배양한 영지버섯 추출물의 항산화 및 항염증 효능 평가 vol.25, pp.1, 2011, https://doi.org/10.7783/kjmcs.2017.25.1.29
  23. 쥐눈이콩-노루궁뎅이버섯 균사체 발효물의 생리활성 vol.30, pp.6, 2011, https://doi.org/10.9799/ksfan.2017.30.6.1348
  24. 천도복숭아 식초의 이화학적 특성과 항산화 및 알코올 대사 효소 활성 vol.28, pp.10, 2018, https://doi.org/10.5352/jls.2018.28.10.1193
  25. 더치 Coffee Grounds 추출물의 항산화, 주름개선, 항균 효과 vol.35, pp.4, 2011, https://doi.org/10.12925/jkocs.2018.35.4.1038
  26. Physicochemical characteristics and antioxidant capacities of peach fruits in the development stages vol.26, pp.2, 2011, https://doi.org/10.11002/kjfp.2019.26.2.174
  27. 상황청혈플러스(PLCP)가 HUVEC에서 이상지질혈증 관련 항산화 작용 및 염증인자 발현 억제에 미치는 영향 vol.41, pp.2, 2020, https://doi.org/10.13048/jkm.20014
  28. 해백청혈플러스(AMCP)의 항산화 및 항염증 작용을 통한 죽상동맥경화 억제 효과 vol.34, pp.3, 2020, https://doi.org/10.15188/kjopp.2020.06.34.3.126
  29. 실비산의 항산화 및 지방축적 억제 효과 vol.30, pp.4, 2011, https://doi.org/10.18325/jkmr.2020.30.4.41
  30. Antioxidant and Anti-Inflammatory Effects of White Mulberry (Morus alba L.) Fruits on Lipopolysaccharide-Stimulated RAW 264.7 Macrophages vol.26, pp.4, 2011, https://doi.org/10.3390/molecules26040920
  31. 와송 에틸아세테이트 분획물의 항산화 효능에 관한 연구 vol.38, pp.1, 2011, https://doi.org/10.12925/jkocs.2021.38.1.118
  32. 매실 식초 분말의 항산화 및 유방암 세포주 증식 억제 효과 vol.31, pp.2, 2011, https://doi.org/10.5352/jls.2021.31.2.149
  33. 추출 용매를 달리한 생강 추출물에 대한 생리활성의 비교 평가 연구 vol.36, pp.2, 2021, https://doi.org/10.6116/kjh.2021.36.2.19.