DOI QR코드

DOI QR Code

Modeling and Control of IGBT Converter-Based High-Voltage Direct Current System

  • Kim, Hong-Woo (Wind Energy Center, Korea Institute of Energy Research) ;
  • Ko, Suk-Whan (Wind Energy Center, Korea Institute of Energy Research) ;
  • An, Hae-Joon (Wind Energy Center, Korea Institute of Energy Research) ;
  • Jang, Gil-Soo (School of Electrical Engineering at Korea University) ;
  • Ko, Hee-Sang (Product Development Team/Wind Turbine Division, Samsung Heavy Industries Company)
  • Received : 2011.05.25
  • Accepted : 2011.07.14
  • Published : 2011.07.31

Abstract

This paper presents modeling and control for the emerging IGBT converter-based high-voltage direct-current system (IGBT-HVDC). This paper adds to the representation of the IGBT-HVDC system in the dq-synchronous reference frame and its decoupled control scheme. Additionally, since the IGBT-HVDC is able to actively support the grid due to its capacity to control independently active and reactive power production, a reactive power control scheme is presented in order to regulate/contribute to the voltage at a remote location by taking into account its operational state and limits. The ability of the control scheme is assessed and discussed by means of simulations using ahybrid power system, which consists of a permanent magnetic synchronous-generator (PMSG) based wind turbine, an IGBT-HVDC, and a local load.

Keywords

References

  1. T. Hasegawa, K. Yamaji, H. Irokawa, H. Shirahama, C. Tanaka, and K. Akabane, Development of a thyristor valve for next generation 500 kV HVDC transmission systems, IEEE Trans. on Power Delivery, 11 (1996) 1783-1788. https://doi.org/10.1109/61.544258
  2. L. Ran, D. Xiang, L. Hu, and K. Abbott, Voltage stability of an HVDC systems for a large offshore wind farm with DFIGs, The 8th IEE International Conf. on AC and DC Power Transmission Proc., (2006) 150-154. https://doi.org/10.1049/cp:20060031
  3. M. O. Faruque, Y. Zhang, V. Dinavahi, Detailed modeling of CICRE HVDC benchmark system using PSCAD/EMTDC and PSB/SIMLINK, IEEE Trans. on Power Delivery, 21(2006) 378-387. https://doi.org/10.1109/TPWRD.2005.852376
  4. L. Gyugyi, Unified power-flow control concept for flexible AC transmission systems, IEE Part C: Generation, Transmission and Distribution Proc., 139 (1992) 323-331. https://doi.org/10.1049/ip-c.1992.0048
  5. L. Gyugyi, Dynamic compensation of AC transmission lines by solid-state synchronous voltage source, IEEE Trans. on Power Delivery, 9(1994) 904-911. https://doi.org/10.1109/61.296273
  6. A. A. Edris, S. Zelingher, L. Gyugyi and L. J. Kovalsky, Squeezing more power from the grid, IEEE Power Engineering Review, 22 (2002) 4-6. https://doi.org/10.1109/MPER.2002.4312243
  7. E. I. Carroll, Power electronics for very high power applications, ABB Review, 2 (1999) 4-11.
  8. H. Akagi, Large static converters for industry and utility applications, Proc. IEEE Power Engineering Society Summer Meeting Conf. Proc., 89 (2001) 976-983. https://doi.org/10.1109/5.931498
  9. T. J. Hammons, M. Willingham, K. N. Mak, M. D. Silva, M. Morozowski, and B. K. Blyden, Generation and transmission improvements in developing countries, IEEE Trans. on Energy Conversion, 14 (1999) 760-765. https://doi.org/10.1109/60.790948
  10. A. M. H. A. Karim, N. H. A. Maskati and S. Sud, Status of Gulf co-operation council (GCC) electricity grid system interconnection, IEEE Power Engineering Society General Meeting Proc., 2 (2004)1385-1388. https://doi.org/10.1109/PES.2004.1373088
  11. T. J. Hammons, D. Woodford, J. Loughtan, M. Chamia, J. Donahoe, D. Povh, B. Bisewski, W. Long, Role of HVDC transmission in future energy development, IEEE Power Engineering Review, 20 (2000) 10-25. https://doi.org/10.1109/MPER.2000.819913
  12. L. Weimers, AC or DC: which way should China go? Modern Power Systems, 25 (2005)11-17.
  13. C. Ashmore, Transmit the light fantastic, IET, Power Engineer, 20 (2006) 24-27.
  14. ABB library and references for HVDC [Online] Available: http://www.abb.com/
  15. G. Asplund, K. Eriksson and K. Svensson, HVDC Light DC transmission based on voltage sourced converters, ABB Review, 1 (1998) 4-9.
  16. G. Asplund, K. Eriksson and O. Tollerz, HVDC Light: a tool for electric power transmission to distant loads, VII Sepope Conf. Proc., (1998).
  17. G. Asplund, K. Eriksson and K. Svensson, DC transmission based on voltage source converters, CIGRE SC14 Colloquium, South Africa Proc., (1997) pp. 1-7.
  18. G. Asplund, Application of HVDC Light to power system enhancement, IEEE Power Engineering Society Winter Meeting Conf. Proc., 4 (2000) 2498-2503. https://doi.org/10.1109/PESW.2000.847202
  19. K. Eriksson, Operational experience of HVDC Light, IEE International Conf. on AC-DC Power Transmission Proc., (2001) 205-210. https://doi.org/10.1049/cp:20010543
  20. A. Petersson and A. Edris, Dynamic performance of the Eagle Pass back-to-back HVDC Light tie, IEE International Conf. on AC-DC Power Transmission Proc., (2001) 220-225. https://doi.org/10.1049/cp:20010546
  21. U. Axelsson, A. Holm, C. Liljegren, M. Aberg, K. Eriksson and O. Tollerz, The Gotland HVDC Light projectexperiences from trial and commercial operation, 16thIEE International Conf.and Exhibition on Electricity Distribution Proc. (2001). https://doi.org/10.1049/cp:20010675
  22. T. F. Nestli, L. Stendius, M. J. Joahansson, A. Abrahamsson and P. C. Kjaer, Powering Troll with new technology, ABB Review, 2 (2003) 15-19.
  23. L. Stendius and P. Jones, The challenge of offshore power system construction-bringing power successfully to Troll A, one of the world's largest oil and gas platform, IEE International Conf. on AC-DC Power Transmission Proc., (2006) 75-78. https://doi.org/10.1049/cp:20060016
  24. S. G. Johansson, L. Carlsson and G. Russberg, Explore the power of HVDC Light a web based system interaction tutorial, IEEE Power Systems Conf. and Exposition Proc., 2 (2004) 839-842. https://doi.org/10.1109/PSCE.2004.1397504
  25. B. Andersen and C. Barker, A new era in HVDC?, IEE Review, 46 (2000) 33-39. https://doi.org/10.1049/ir:20000208
  26. B. Jacobson, Y. J. Hafner, P. Rey, G. Asplund, M. Jeroense, A. Gustafsson, and M. Bergkvist, HVDC with voltage source converters and extruded cables for up to ${\pm}300$ kV and 1000 MW, CIGRE Conf. Proc. (2006).
  27. A. Hyttinen, J. O. Lamell, and T. F. Nestli, New application of voltage source converter (VSC) HVDC to be installed on the gas platform troll A, CGRE Conf. Proc. (2004).
  28. Y. J. Hafner, M. Hyttinen, and B. Paajarvi, On the short circuit current contribution of HVDC Light, IEEE/PES T&D 2002 Asia Pacific Proc. (2002). https://doi.org/10.1109/TDC.2002.1177753
  29. L. Weimers, HVDC Light: A new technology for a better environment, IEEE Power Engineering Review, 18 (1998)19-20. https://doi.org/10.1109/MPER.1998.691411
  30. A. S. Cook, M. Wyckmans, L. Weimers, and K. Eriksson, Network interconnection using HVDC Light, XV EXPO-SNPTEE Conference (1999).
  31. P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery and Drive Systems, John Wiley & Sons Inc., New Jersey, 2002.
  32. T. Ackermann, Wind Power in Power Systems, John Wiley & Sons, Ltd., UK, 2005.
  33. Hee-Sang Ko, Gi-Gab Yoon, and Won-Pyo Hong, Active Use of DFIG-Based Variable-Speed Wind-Turbine for Voltage Regulation at a Remote Location, IEEE Trans. on Power System, 22 (2007) 1916-1925. https://doi.org/10.1109/TPWRS.2007.908475