DOI QR코드

DOI QR Code

Transduced Tat-Annexin protein suppresses inflammation-associated gene expression in lipopolysaccharide (LPS)-stimulated Raw 264.7 cells

  • Lee, Sun-Hwa (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, College of Medicine, Hallym University) ;
  • Kim, Dae-Won (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, College of Medicine, Hallym University) ;
  • Back, Su-Sun (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, College of Medicine, Hallym University) ;
  • Hwang, Hyun-Sook (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, College of Medicine, Hallym University) ;
  • Park, Eun-Young (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, College of Medicine, Hallym University) ;
  • Kang, Tae-Cheon (Department of Anatomy and Neurobiology, College of Medicine, Hallym University) ;
  • Kwon, Oh-Shin (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Park, Jong-Hoon (Department of Biological Sciences, Sookmyung Women's University) ;
  • Cho, Sung-Woo (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine) ;
  • Han, Kyu-Hyung (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, College of Medicine, Hallym University) ;
  • Park, Jin-Seu (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, College of Medicine, Hallym University) ;
  • Eum, Won-Sik (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, College of Medicine, Hallym University) ;
  • Choi, Soo-Young (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, College of Medicine, Hallym University)
  • Received : 2011.04.12
  • Accepted : 2011.05.30
  • Published : 2011.07.31

Abstract

Annexin-1 (ANX1) is an anti-inflammatory protein as well as an important modulator in inflammation. However, the precise action of ANX1 remains unclear. To elucidate the protective effects of ANX1 on lipopolysaccharide (LPS)-induced murine macrophage Raw 264.7 cells, we constructed a cell-permeable Tat-ANX1 protein. The transduced Tat-ANX1 protein markedly inhibited the expression of cyclooxygenase-2, production of prostaglandin $E_2$, and generation of pro-inflammatory cytokines in the cells. Furthermore, transduced Tat-ANX1 protein caused a significant reduction in the activation of nuclear factor-kappa B (NF-${\kappa}B$) and mitogen-activated protein kinase (MAPK). The results indicate that Tat-ANX1 inhibits the production of inflammatory response cytokines and enzymes by blocking NF-${\kappa}B$ and MAPK. Therefore, Tat-ANX1 protein may be useful as a therapeutic agent against various inflammatory diseases.

Keywords

References

  1. Bertolini, A., Ottani, A. and Sandrini, M. (2002) Selective COX-2 inhibitors and dual acting anti-inflammatory drugs: critical remarks. Curr. Med. Chem. 9, 1033-1043. https://doi.org/10.2174/0929867024606650
  2. Korhonen, R., Lathi, A., Kankaanranta, H. and Moilanen, E. (2005) Nitric oxide production and signaling in inflammation. Curr. Drug Targets Inflamm. Allergy 4, 471-479. https://doi.org/10.2174/1568010054526359
  3. Libby, P., Ridker, P. M. and Maseri, A. (2000) Inflammation and atherosclerosis. Circulation 105, 1135-1143.
  4. Tilley, S. L., Coffman, T. M. and Koller, B. A. (2001) Mixed message gene: modulation of inflammation and immune responses by prostaglandins and thromboxanes. J. Clin. Invest. 107, 191-195. https://doi.org/10.1172/JCI9862
  5. Carey, M. A., Germolec, D. R., Langenbach, R. and Zeldin, D. C. (2003) Cyclooxygenase enzymes in allergic inflammation and asthma. Prostaglandins Leukot. Essent. Fatty Acids 69, 157-162. https://doi.org/10.1016/S0952-3278(03)00076-0
  6. Vancheri, C., Mastruzzo, C., Sortino, M. A. and Crimi, N. (2004) The lung as a privileged site for the beneficial actions of PEG2. Trends Immunol. 25, 40-46. https://doi.org/10.1016/j.it.2003.11.001
  7. Lawrence, T., Gilroy, D. W., Colville-Nash, P. R. and Willoughby, D. A. (2001) Possible new role for NF-kB in the resolution of inflammation. Nat. Med. 7, 1291-1297. https://doi.org/10.1038/nm1201-1291
  8. Rietschel, E. T., Kirikae, T., Schade, F. U., Mamat, U., Schmidt, G., Loppnow, H., Ulmer, A. J., Zahringer, U., Seydel, U. and Di Padova, F. (1994) Bacterial endotoxin: molecular relationships and structure to activity and function. FASEB J. 8, 217-225. https://doi.org/10.1096/fasebj.8.2.8119492
  9. Mararov, S. S. (2000) NF-kB as a therapeutic target in chronic inflammation: recent advances. Mol. Med. Today 6, 441-448. https://doi.org/10.1016/S1357-4310(00)01814-1
  10. Renard, P. and Raes, M. (1999) The proinflammatory transcription factor NF-kB: a potential target for novel therapeutical strategies. Cell Biol. Toxicol. 15, 341-344. https://doi.org/10.1023/A:1007652414175
  11. Babbin, B., Laukoetter, M. G., Nava, P., Koch, S., Lee, W. Y., Capaldo, C. T., Peatman, E., Severson, E. A., Flower, R. J., Perretti, M., Parkos, C. A. and Nusrat, A. (2008) Annexin A1 regulates intestinal mucosal injury, inflammation, and repair. J. Immunol. 181, 5035-5044. https://doi.org/10.4049/jimmunol.181.7.5035
  12. Kamal, A. M., Flower, R. J. and Perretti, M. (2005) An overview of the effects of annexin 1 on cells involved in the inflammatory process. Mem. Inst. Oswaldo Cruz. Rio de Janeiro. 100 (Suppl 1), 39-48.
  13. Perretti, M. and D`Acquisto, F. (2009) Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat. Rew. Immunol. 9, 62-70. https://doi.org/10.1038/nri2470
  14. Wadia, J. and Dowdy, S. F. (2002) Protein transduction technology. Curr. Opin. Biotechnol. 13, 52-56. https://doi.org/10.1016/S0958-1669(02)00284-7
  15. Ahn, E. H., Kim, D. W., Kang, H. W., Shin, M. J., Won, M. H., Kim, J., Kim, D. J., Kwon, O. S., Kang, T. C., Han, K. H., Park, J., Eum, W. S. and Choi, S. Y. (2010) Transduced PEP-1-ribosomal protein S3 (rpS3) ameliorates 12-O-tetradecanoylphorbol-13-acetate-induced inflammation in mice. Toxicol. 276, 192-197. https://doi.org/10.1016/j.tox.2010.08.004
  16. An, J. J., Lee, Y. P., Kim, S. Y., Lee, S. H., Lee, M. J., Jeong, M. S., Kim, D. W., Jang, S. H., Yoo, K. Y., Won, M. H., Kang, T. C., Kwon, O. S., Cho, S. W., Lee, K. S., Park, J., Eum, W. S. and Choi, S. Y. (2008) Transduced human PEP-1-heat shock protein 27 efficiently protects against brain ischemic insult. FEBS J. 275, 1296-1308. https://doi.org/10.1111/j.1742-4658.2008.06291.x
  17. Choi, H. S., An, J. J., Kim, S. Y., Lee, S. H., Kim, D. W., Yoo, K. Y., Won, M. H., Kang, T. C., Kwon, H. J., Kang, J. H., Cho, S. W., Kwon, O. S., Park, J., Eum, W. S. and Choi, S. Y. (2006) PEP-1-SOD fusion protein efficiently protects against paraquat-induced dopaminergic neuron damage in a Parkinson disease mouse model. Free Radic. Biol. Med. 41, 1058-1068. https://doi.org/10.1016/j.freeradbiomed.2006.06.006
  18. Eum, W. S., Choung, I. S., Li, M. Z., Kang, J. H., Kim, D. W., Park, J., Kwon, H. Y. and Choi, S. Y. (2004) HIV-1 Tat-mediated protein transduction of Cu,Zn-superoxide dismutase into pancreatic $\beta$ cells in vitro and in vivo. Free Radic. Biol. Med. 37, 339-349. https://doi.org/10.1016/j.freeradbiomed.2004.04.036
  19. Kim, D. W., Jeong, H. J., Kang, H. W., Shin, M. J., Sohn, E. J., Kim, M. J., Ahn, E. H., An, J. J., Jang, S. H., Yoo, K. Y., Won, M. H., Kang, T. C., Hwang, I. K., Kwon, O. S., Cho, S. W., Park, J., Eum, W. S. and Choi, S. Y. (2009) Transduced PEP-1-catalase fusion protein attenuates ischemic neuronal damage. Free Radic. Biol. Med. 47, 941-952. https://doi.org/10.1016/j.freeradbiomed.2009.06.036
  20. Lee, S. H., Jeong, H. J., Kim, D. W., Sohn, E. J., Kim, M. J., Kim, D. S., Kang, T. C., Lim, S. S., Kang, I. J., Cho, S. W., Lee, K. S., Park, J., Eum, W. S. and Choi, S. Y. (2010) Enhancement of HIV-1 Tat fusion protein trasnduction efficiency by bog blueberry anthocyanins. BMB Rep. 43, 561-566. https://doi.org/10.5483/BMBRep.2010.43.8.561
  21. Egleton, R. D. and Davis, T. P. (1997) Bioavailability and transport of peptides and peptide drugs into the brain. Peptides 18, 1431-1439. https://doi.org/10.1016/S0196-9781(97)00242-8
  22. Dietz, G. P. (2010) Cell-penetrating peptide technology to delivery chaperones and associated factors in diseases and basic research. Curr. Pharm. Biotechnol. 11, 167-174. https://doi.org/10.2174/138920110790909731
  23. Adams, D. O. and Hamilton, T. A. (1984) The cell biology of macrophage activation. Annu. Rev. Immunol. 2, 283-318. https://doi.org/10.1146/annurev.iy.02.040184.001435
  24. Morrison, D. C. and Ryan, J. L. (1987) Endotoxins and disease mechanisms. Annu. Rev. Med. 38, 417-432. https://doi.org/10.1146/annurev.me.38.020187.002221
  25. Hannon, R., Croxtall, J. D., Getting, S. J., Roviezzo, F., Yona, S., Paul-Clark, M. J., Gavins, F. N., Perretti, M., Morris, J. F., Buckingham, J. C. and Flower, R. J. (2003) Aberrant inflammation and resistance to glucocorticoids in annexin$1^{-/-}$ mouse. FASEB J. 17, 253-255. https://doi.org/10.1096/fj.02-0239fje
  26. Sudlow, A. W., Carey, F., Forder, R. and Rothwell, N. J. (1996) The role of lipocortin-1 in dexamethasone-induced suppression of $PGE_2$ and TNF-$\alpha$ release from human peripheral blood mononuclear cells. Br. J. Pharmacol. 117,1449-1456. https://doi.org/10.1111/j.1476-5381.1996.tb15305.x
  27. D'Acquisto, F., Cicatiello, L., Iuvone, T., Ialenti, A., Ianaro, A., Esumi, H., Weisz, A. and Carnuccio, R. (1997) Inhibition of inducible nitric oxide synthase gene expression by glucocorticoid-induced proteins in lipopolysaccharide- stimulated J774 cells. Eur. J. Pharmacol. 339, 87-95. https://doi.org/10.1016/S0014-2999(97)01361-7
  28. Ferlazzo, V., D'agostino, P., Milano, S., Caruso, R., Fes, S., Cillari, E. and Parente, L. (2003) Anti-inflammatory effects of annexin-1: stimulation of IL-10 release and inhibition of nitric oxide synthase. Int. Immunopharmacol. 3, 1363-1369. https://doi.org/10.1016/S1567-5769(03)00133-4
  29. Pieretti, S., Giannuario, A. D., Felice, M. D., Perretti, M. and Cirino, G. (2004) Stimulus-dependent specificity for annexin 1 inhibtion of the inflammatory nociceptive response: the involvement of the receptor for formylated peptides. Pain 109, 52-63. https://doi.org/10.1016/j.pain.2004.01.009
  30. Porro, C. A. and Cavazzuti, M. (1993) Spatial and temporal aspects of spinal cord and brainstem activation in the formalin pain model. Prog. Neurobiol. 41, 565-607. https://doi.org/10.1016/0301-0082(93)90044-S
  31. Perretti, M. (1997) Endogenous mediators that inhibit the leukocyote-endothelium interaction. Trends Pharmacol. Sci. 18, 418-425.
  32. Cirino, G., Cicala, C., Sorrentino, L., Ciliberto, C., Arpaia, G., Perretti, M. and Flower, R. J. (1993) Anti-inflammatory actions of an N-terminal peptide from human lipocortin 1. Br. J. Pharmacol. 108, 573-574. https://doi.org/10.1111/j.1476-5381.1993.tb12843.x
  33. Gayathri, B., Manjula, N., Vinaykumar, K. S., Lakshmi, B. S. and Balakrishnan, A. (2007) Pure compound from Boswellia serrata extract exhibits anti-inflammatory property in human PBMCs and mouse macrophages through inhibition of TNF$\alpha$, IL-1$\beta$, NO and MAP kinases. Int. Immunopharmacol. 7, 473-482. https://doi.org/10.1016/j.intimp.2006.12.003
  34. Medicherla, S., Ma, J. Y., Reddy, M., Esikova, I., Kerr, I., Movius, F., Higgins, L. S. and Protter, A. A. (2010) Topical alpha-selective p38 MAP kinase inhibition reduces acute skin inflammation in guinea pig. J. Inflamm. Res. 3, 9-16.
  35. Lebwohl, M. (2005) A clinician's paradigm in the treatment of psoriasis. J. Am. Acad. Dermatol. 53, 59-69. https://doi.org/10.1016/j.jaad.2005.04.031
  36. Barnes, P. J. and Karin, M. (1997) Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 336, 1066-1071. https://doi.org/10.1056/NEJM199704103361506
  37. Yun, K. J., Kim, J. Y., Kim, J. B., Lee, K. W., Jeong, S. Y., Park, H. J., Jung, H. J., Cho, Y. W., Yun, K. and Lee, K. T. (2008) Inhibition of LPS-induced NO and $PGE_2$ production by asiatic acid via NF-kB inactivation in Raw 264.7 macrophages: Possible involvement of the IKK and MAPK pathways. Int. Immunopharmacol. 8, 431-441. https://doi.org/10.1016/j.intimp.2007.11.003
  38. Kwon, H. Y., Eum, W. S., Jang, H. W., Kang, J. H., Ryu, J. Y., Lee, B. R., Jin, L. H., Park, J. and Choi, S. Y. (2000) Transduction of Cu,Zn-superoxide dismutase mediated by an HIV-1 Tat protein basic domain into mammalian cells. FEBS Lett. 485, 163-167. https://doi.org/10.1016/S0014-5793(00)02215-8
  39. Bradford, M. A. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Cited by

  1. Transduced Tat-glyoxalase protein attenuates streptozotocin-induced diabetes in a mouse model vol.430, pp.1, 2013, https://doi.org/10.1016/j.bbrc.2012.10.134
  2. Anti-inflammatory effects of arbutin in lipopolysaccharide-stimulated BV2 microglial cells vol.61, pp.8, 2012, https://doi.org/10.1007/s00011-012-0474-2
  3. Modification of Turnip yellow mosaic virus coat protein and its effect on virion assembly vol.46, pp.10, 2013, https://doi.org/10.5483/BMBRep.2013.46.10.046
  4. Mycobacterium tuberculosis 19-kDa lipoprotein induces Toll-like receptor 2-dependent peroxisome proliferator-activated receptor γ expression and promotes inflammatory responses in human macrophages vol.11, pp.4, 2015, https://doi.org/10.3892/mmr.2014.3070
  5. Roles of cysteine residues in the inhibition of human glutamate dehydrogenase by palmitoyl-CoA vol.45, pp.12, 2012, https://doi.org/10.5483/BMBRep.2012.45.12.156
  6. Anti-inflammatory effects of egg white combined with chalcanthite in lipopolysaccharide-stimulated BV2 microglia through the inhibition of NF-κB, MAPK and PI3K/Akt signaling pathways vol.31, pp.1, 2013, https://doi.org/10.3892/ijmm.2012.1169
  7. PEP-1-p18 prevents neuronal cell death by inhibiting oxidative stress and Bax expression vol.45, pp.9, 2012, https://doi.org/10.5483/BMBRep.2012.45.9.083
  8. Suppression of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation in mice by transduced Tat-Annexin protein vol.45, pp.6, 2012, https://doi.org/10.5483/BMBRep.2012.45.6.036
  9. Ac2-26, an Annexin A1 Peptide, Attenuates Ischemia-Reperfusion-Induced Acute Lung Injury vol.18, pp.8, 2017, https://doi.org/10.3390/ijms18081771
  10. Inhibitory effects of diallyl disulfide on the production of inflammatory mediators and cytokines in lipopolysaccharide-activated BV2 microglia vol.262, pp.2, 2012, https://doi.org/10.1016/j.taap.2012.04.034
  11. PEP-1–metallothionein-III protein ameliorates the oxidative stress-induced neuronal cell death and brain ischemic insults vol.1820, pp.10, 2012, https://doi.org/10.1016/j.bbagen.2012.06.012
  12. c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) are involved in Mycobacterium tuberculosis-induced expression of Leukotactin-1 vol.45, pp.10, 2012, https://doi.org/10.5483/BMBRep.2012.45.10.120
  13. Anti-inflammatory effects of Tat-Annexin protein on ovalbumin-induced airway inflammation in a mouse model of asthma vol.417, pp.3, 2012, https://doi.org/10.1016/j.bbrc.2011.12.084
  14. Mechanisms of the anti-inflammatory effects of glucocorticoids: genomic and nongenomic interference with MAPK signaling pathways vol.26, pp.12, 2012, https://doi.org/10.1096/fj.12-216382