# Stress-Strain curve를 이용한 W-C-N 확산방지막 물성 특성 연구

이규영<sup>a</sup> · 김수인<sup>a</sup> · 박상재<sup>b</sup> · 이동관<sup>b</sup> · 정용록<sup>b</sup> · 정 준<sup>b</sup> · 이종림<sup>b</sup> · 이창우<sup>a</sup>\*

<sup>a</sup>국민대학교 물리학과, 서울 136-702 <sup>b</sup>KAIST 부설 한국과학영재학교, 부산 614-822

(2011년 2월 21일 받음, 2011년 3월 25일 수정, 2011년 4월 27일 확정)

본 연구에서는 W (Tungsten)를 주 구성 물질로 불순물 C (Carbon)과 N (Nitrogen)을 첨가한 W-C-N 확산방지막 시편을 제 조하였고, N<sub>2</sub>가스의 유량을 변화시키면서 확산방지막을 제조하여 각각의 시료에 대하여 600°C열처리를 하였다. 실험 결과 질 소유량의 변화에 따라 시편의 탄소성 구간층의 물성 변화율이 시편의 탄성구간보다 큰 것을 알아냈다. 이는 질소 가스의 유량 변화가 시편의 탄소성 구간에 더욱 직접적으로 연관이 되었다는 것을 알 수 있었다. 각 시료는 16회 연속 압입 실험을 실시하 여 Stress-strain curve를 통하여 질소 가스의 유량이 2 sccm인 박막의 분산이 적음을 알아냈고, 연속압입을 통하여 얻어진 상항복점의 표준 편차 역시 질소 가스의 유량이 2 sccm인 박막이 가장 적다는 것을 알 수 있었다. Stress-strain curve 분산 과 상항복점의 Stress 값의 표준 편차의 크기로 부터 박막의 안정도를 예상할 수 있었으며, 이 결과로부터 W-C-N 박막은 질 소 유량에 따라 박막의 안정도가 변화하는 것을 알았다.

주제어 : 확산방지막, W-C-N 박막, 나노인덴터, 응력-변형 곡선

# I. 서 론

기존 반도체 집적회로의 금속배선으로 사용되었던 AL은 RC시간지연 문제로 Cu로 대체하려는 연구가 진행중에 있 다. Cu는 AL보다 비저항이 낮고 녹는점이 높다는 장점이 있으나 저온에서 기판인 Si와 쉽게 반응하고 접착력이 약 하다는 단점이 있다. 이러한 문제를 해결하기 위해 금속배 선과 기판 사이에 확산방지막을 삽입하는 방법이 제시되었 다 [1-4].

본 연구에서는 W에 불순물로 C와 N를 첨가하여 W-C-N 확산방지막을 제작하였고 이 때 박막 내에 W와 C 의 농도를 고정시킨 후 질소의 포함 농도를 달리하여 rf magnetron sputter를 이용하여 시료를 증착하였다. 증착 된 시료는 질소 분위기에서 30분간 600°C의 온도에서 열적 손상을 인가하였다. 열처리된 시료는 기존 분광학적으로 분석된 선행 연구 결과를 바탕으로 나노트라이볼로적 관점 으로 W-C-N 확산방지막의 물성을 분석하였다. 분석에 사 용된 장비는 Hysitron사의 Triboindenter를 이용하여 열 적 손상 이후의 박막 표면을 indenting하여 tip에 인가된 힘과 시료 표면으로부터 압입된 깊이와의 관계로부터 Load-depth 데이터를 얻었다. 이렇게 획득된 Loaddepth로부터 시료의 Stress-Strain 상태를 확인하였다. Indentation 실험에 사용된 tip은 Berkovich tip을 사용하 였으며 측정 시의 최대 압입력은 3,000 µN으로 하였다 [5,6].

#### Ⅱ.실 험

W-C-N 확산방지막을 증착하기에 앞서 Si기판을 HF (hydrofluoric acid)에 넣어 산화막을 제거하였으며, 증착 법으로는 rf magnetron sputtering 시스템을 사용하였다. 타겟은 순도 99.99%인 W, 99.95%인 WC를 사용하였으며, co-sputtering condition은 다음과 같다. W 타겟의 power density는 2 W/cm<sup>2</sup>, WC 타겟은 0.2 W/cm<sup>2</sup>이고 Ar 과 N<sub>2</sub>의 양은 mass flow controller를 사용하여 정확하게 조절 하였으며, 증착시의 (N<sub>2</sub> + Ar) 총 유량은 일정 양으로 고정하였다. 증착시 압력은 3 mTorr로 고정하였으며, 본 실험에 들어가기 전 pre-sputtering을 하여 타겟의 산화 막을 제거한 후 상온에서 증착을 실시하였다.

<sup>\* [</sup>전자우편] cwlee@kookmin.ac.kr

| Sample | N <sub>2</sub> flow<br>(sccm) | Standard -<br>deviation | Slope of |         |
|--------|-------------------------------|-------------------------|----------|---------|
|        |                               |                         | elastic  | elasto  |
|        |                               |                         |          | plastic |
| (a)    | 0                             | 0.213                   | 396.96   | 128.24  |
| (b)    | 0.5                           | 0.508                   | 465.27   | 212.52  |
| (c)    | 1.5                           | 0.419                   | 384.17   | 107.53  |
| (d)    | 2.0                           | 0.208                   | 453.23   | 179.71  |

Table 1. The standard deviation and the slop of elastic and elastoplastic section of as-deposited and annealed samples were shown after annealing at 600°C for various N<sub>2</sub> gas flow.



Figure 1. Quasi-static load function according to load, hold, unload step and time.

증착된 시료 두께는 1,000 Å 이었으며 시료에 고온 열적 손상을 인가하기 위하여 질소 분위기에서 Furnace를 사용 하여 30분간 600℃ 열처리를 실시하였다(Table 1).

본 실험에서 박막의 측정은 Hysitron사의 Triboindenter를 이용하여 Load-depth 그래프를 획득하고 여기에서 Loading 구간의 정보만을 분류하여 stress-strain 그래프 추출하여 비교 분석하였다. Stress와 strain은 다음과 같 다 [5,6].

$$Stress(\sigma) = \frac{P_{Load}}{A_c} \tag{1}$$

$$Strain = \frac{a}{R} \tag{2}$$

여기서 a는 Tip과 시료의 접촉 반경을, R은 팁의 반경을 나타낸다. A<sub>c</sub>와 P<sub>Load</sub>는 연속 압입 실험을 통하여 획득하게 된다.

Fig. 1은 실험에서 사용된 indentation 조건을 나타낸



Figure 2. Schematic diagram of the consecutively press testing points.

그림으로 각각의 시료에 대하여 0 µN에서 인가압력을 일 정하게 증가하여 5초 후 최대 인가압력 3,000 µN으로 Loading 구간을 주었다. 그 후 5초간 최대 인가 압력을 유 지해주는 Holding 구간, 마지막으로 3,000 µN에서 0 µN 으로 인가 압력을 줄여주는 Unloading 구간 등, 총 3개 구 간으로 indentation을 실시하였으며, 중간에 hold 구간을 삽입하여 tip이 시료 표면에 인가되면서 시료 내부 응력에 의한 측정값의 오차를 최소화하도록 하였다.

시료의 측정은 한 시료당 가로 세로 각각 4 point by 4 point로 총 16회 실시하였으며 각 indent point는 10 µm 로 일정하게 이격시켜 측정하였다(Fig. 2).

## Ⅲ. 결과 및 고찰

Fig. 3은 증착시 질소 가스의 유량을 0에서 2 sccm으로 변화시켜 가면서 증착된 시료를 600°C 열처리 한 후 stress-strain 특성을 타나낸 그립이다. 모든 물질은 탄성 구간, 탄소성 구간, 완전 소성 구간이 존재하는데 이 구간 은 stress-strain 그래프에서 기울기가 급격하게 변하는 구간임이 알려져 있다 [6]. Fig. 3의 경우 모든 시료에서 stress-strain 기울기의 변곡점이(그림의 원으로 표시된 부분) 나타나고, 12 GPa 부근에서 임계 강도가 나타나는 것을 확인하였다. 그러나 Fig. 2(a)에서 2(c)의 경우에서는 stress-strain의 기울기 변곡점이 불분명하게 나타나는 것 이 확인 되었다.

이 실험에서는 한 시료에 대하여 가로 세로 각각 4 point



Figure 3. The result of stress-strain graph and the flow rate of  $N_2$  gas is (a) 0 sccm, (b) 0.5 sccm, (c) 1.5 sccm, and (d) 2 sccm where the heating condition is 600°C.

by 4 point를 10 μm씩 이동하여 총 900 μm<sup>2</sup> 면적에 대하 여 실험을 실시한 후 stress-strain 특성 곡선을 나타낸 것 으로 같은 시료에 대하여 stress-strain의 기울기 변곡점 이나 곡선 자체에 대한 분산이 나타나는 것은 시료가 열적 손상 이후 불균일한 정도로 가정할 수 있다. 따라서 Fig. 3(d)가 상대적으로 가장 적은 분산을 보이는 것으로 보아 질소 유량이 2 sccm으로 증착된 시료가 상대적으로 열적 손상에 대하여 안정적인 것을 알 수 있다. 또한 16회 연속 측정한 데이터를 통하여 각 point의 상항복점의 stress를 얻었으며, 이 값들을 통하여 그 표준 편차를 구하였다. (Table 1.) 상항복점의 표준편차 역시 질소 유량이 2 sccm 인 sample (d)가 다른 sample등에 비하여 가장 적은 표준 편차를 가지고 있다. 실험 결과를 통하여 질소 유량이 2 sccm인 상태에서 만든 W-C-N 박막은 질소유량이 0, 0.5, 1.5 sccm인 박막에 비하여 물성적인 특성이 보다 더 안정적임을 알 수 있었다. 이는 W-C-N 확산방지막에 대 한 XRD와 XPS 분석을 통하여 얻어진 선행 연구 결과와 비 교하였을 때와 유사한 결과를 확인하였으며, 이는 박막내 포함된 질소가 고온 열처리 중 빠져 나감으로 인하여 고온

에서 더 안정적인 것에 대하여 보고된 바가 있다 [4,7]. 상 항복점을 비교하면 질소유량이 0.5, 1.5 sccm으로 증착한 시료는 질소가 포함 되지 않은 시료에 비하여 상항복점이 낮아지는 추세를 볼 수 있다. 각 시료의 상항복점의 최대 값을 구해보면 (a) 시료의 경우 13.12 GPa, (b) 시료는 11.65 GPa, (c) 11.65 GPa 그리고 (d) 시료는 12.9 GPa의 결과 값을 얻었다.

또한 data의 stress-strain curve 내의 탄성 구간 및 탄 소성 구간의 기울기 값을 구하였다(Table 1). stressstrain curve 내의 기울기는 그 구간의 영률을 의미하는데, 질소 유량에 따른 탄성 구간의 기울기는 sample (c)에서 최소 384.17값을 가지며, sample (d)에서 최대 465.27 값 을 가지는 것을 알 수 있고, 탄소성 구간의 기울기는 sample (a)에서 최소 107.71값을, 그리고 sample (b)에서 최대 212.52로 변화한다. W-C-N 박막의 물성변화는 질 소 포함 농도 등에 관여되어 있는데 [4], 본 연구에서 박막 의 탄성 영역보다 탄소성 영역의 물성 값의 변화 폭이 큰 것은 박막의 열처리 과정에서 탄성 구간이 포함된 sample 표면의 질소는 결합이 끊어져 표면에서 질소가 드물게 존 재하지만 탄소성 구간인 박막 내부에서는 질소가 비교적 안정적으로 존재하여 탄소성 영역에서의 영률에 영향을 미 친 것으로 예상된다. 특히 질소 가스 유량이 0.5 sccm인 시료의 탄소성 구간 영역의 기울기는 다른 시료에 비하여 상당히 큰 편인데 이는 질소 가스 유량이 0.5 sccm 이상인 경우 이때는 박막의 격자 간격이 불안정하여 박막자체에서 수축응력 및 인장응력 등이 발생하여 다른 시료들에 비하 여 탄소성 구간 영역의 영률이 확연히 다른 것으로 예상된 다 [4]. 반면 질소 가스의 유량이 0 sccm인 시편의 경우에 도 600°C 온도에서 W과 C가 서로 불안정해지는 것을 알 수 있었다. W-C 박막은 700℃ 이상의 온도에서는 박막이 심하게 벗겨지는 현상이 있다고 알려져 있다 [1,7]. 본 실 험을 통하여 질화 물질이 고온에서 비교적 더 안정적이며 특히 질소 가스의 유량이 2 sccm인 W-C-N 박막은 다른 시료들 보다 600°C 열처리 후에도 더욱 안정적으로 유지 된다는 것을 알 수 있었다.

### **Ⅳ**. 결 론

질소 가스의 유량을 달리 한 W-C-N 박막을 연속압입 방법으로 분석한 결과 질소 가스의 유량에 따라 박막의 안 정성이 바뀌는 것을 알 수 있었으며 실험결과 질소 가스의 유량이 2 sccm인 박막이 600℃ 열처리 온도에서 다른 sample들보다 상대적으로 안정하다는 것을 알았다. 또한 박막의 안정성에 영향을 미치는 조건 중 하나로 박막 증착 시의 질소 가스의 유량의 변화로 예상할 수 있었다. 질소 가스 유량의 변화는 박막의 강도 및 탄성계수 등에 영향을 미치는 것을 알 수 있었다. 특히 질소 유량의 증가에 의하 여 박막의 경도의 값이 낮아지는 것을 볼 수 있었다.

#### 참고문헌

- S. I. Kim, Y. J. Hwang, D. S. Ham, J. K. Nho, J.
  Y. Lee, J. Park, C. G. Ahn, C. S. Kim, C. W. Oh,
  K. H. Yoo, and C. W. Lee, J. Korean Vaccum Soc.
  18, 203 (2009).
- [2] S. I. Kim and C. W. Lee, J. Korean Vaccum Soc. 16, 348 (2007).
- [3] S. I. Kim and C. W. Lee, J. Korean Vaccum Soc. 17, 518 (2008).
- [4] S. I. Kim and C. W. Lee, J. Korean Vaccum Soc. 17, 109 (2008).
- [5] W. C. Oliver and G. M. Pharr, J. mater. Res. 7, 1564 (1992).
- [6] E. Martinez, J. Romero, A. Lousa, and J. Esteven, Appl. Phys. A: Mater. Sci. Process 77, 419 (2003).
- [7] S. I. Kim and C. W. Lee, J Electroceram 23, 488 (2009).

# Physical Property of W-C-N Diffusion Barrier through Stress-Strain curve

Kyu Young Lee<sup>a</sup>, Soo In Kim<sup>a</sup>, Sang Jae Park<sup>b</sup>, Dong Kwan Lee<sup>b</sup>, Yong Rok Jeong<sup>b</sup>, Jun Jung<sup>b</sup>, Jong Rim Lee<sup>b</sup>, and Chang Woo Lee<sup>a</sup>\*

<sup>a</sup>Department of Nano & Electronic Physics, Kookmin University, Seoul 136-702 <sup>b</sup>Korea Science Academy, Busan 614-822

(Received February 21, 2011, Revised March 25, 2011, Accepted April 27, 2011)

This paper suggest tungsten (W)-carbon (C)-nitrogen (N) thin films for diffusion barrier that W is main material and C and N are additives. W-C-N thin films are deposited with fixed rates of W and C but with a variation of N<sub>2</sub> gas flow and W-C-N thin films are heated at 600°C. From the experimental results, the variation of elastoplastic region for W-C-N thin film measured by tribological property is larger than that of elastic region with a variation of N<sub>2</sub> gas flow. These results show that the N<sub>2</sub> gas flow is more directly related with the elastoplastic region of W-C-N thin film. Nanoindenting test executed 16 times consecutively and we got the stress-strain curve graphs and hardness datas at each sample. Through the stress-strain curve graphs, the standard diviation of stress-strain curve for N<sub>2</sub> gas flow rate of 2.0 sccm is smaller than that of 0, 0.5, 1.5 sccm. Consequently, the physical stability of W-C-N thin film depends on the flow rate of N<sub>2</sub> gas.

Keywords : Diffusion barrier, W-C-N thin film, Nano-indenter, Stress-strain curve

\* [E-mail] cwlee@kookmin.ac.kr