DOI QR코드

DOI QR Code

Control of Heat Temperature in Light Emitting Diodes with Thermoelectric Device

열전소자를 이용한 발광다이오드의 발열 온도 제어

  • Han, S.H. (Department of Electrophysics, Kwangwoon University) ;
  • Kim, Y.J. (Department of Electrophysics, Kwangwoon University) ;
  • Kim, J.H. (Department of Electrophysics, Kwangwoon University) ;
  • Kim, D.J. (Department of Electrophysics, Kwangwoon University) ;
  • Jung, J.Y. (Department of Electrophysics, Kwangwoon University) ;
  • Kim, S. (Department of Electrophysics, Kwangwoon University) ;
  • Cho, G.S. (Department of Electrophysics, Kwangwoon University)
  • 한상호 (광운대학교 전자물리학과) ;
  • 김윤중 (광운대학교 전자물리학과) ;
  • 김정현 (광운대학교 전자물리학과) ;
  • 김동준 (광운대학교 전자물리학과) ;
  • 정종윤 (광운대학교 전자물리학과) ;
  • 김성인 (광운대학교 전자물리학과) ;
  • 조광섭 (광운대학교 전자물리학과)
  • Received : 2011.05.09
  • Accepted : 2011.07.04
  • Published : 2011.07.30

Abstract

The heat temperature of a light emitting diode (LED) is investigated with the thermoelectric device (TED). The Peltier effect of the thermoelectric device is used to control the heat radiation and the junction temperature of high-power LEDs. For the typical specific current (350 mA) of high-power (1 W) LEDs, the LED temperature and the p-n junction temperature become $64.5^{\circ}C$ and $79.1^{\circ}C$, respectively. For 0.1~0.2 W driving power of TED, the LED temperature and the junction temperature are reduced to be $54.2^{\circ}C$ and $68.9^{\circ}C$, respectively. As the driving power of the TED increases over 0.2 W, the temperature of LED itself and the junction temperature are increased due to the heat reversed from the heat-sink to LED. As the difference of temperature between LED and the heat-sink is increased, the quantity of reversed heat becomes larger and it results to degrade the cooling capability of TED.

열전소자를 사용하여 발광다이오드의 방열효과를 조사하였다. 열전소자의 냉각기능인 펠티에 효과(Peltier effect)를 이용하여, 고전력 발광다이오드의 방열과 p-n접합부의 온도를 제어하였다. 정격전류(350 mA)에 대한 고전력(1 W급) 발광다이오드(Light Emitting Diodes: LEDs)의 온도와 p-n접합부 온도는 각각 $64.5^{\circ}C$$79.1^{\circ}C$이다. 열전소자의 입력 전력 0.1~0.2 W에 대하여, LED의 온도와 접합부 온도는 각각 $54.2^{\circ}C$$68.9^{\circ}C$로 낮아진다. 열전소자에 입력 전력을 0.2 W 이상으로 증가할수록, LED의 온도와 접합부의 온도가 상승한다. 이는 열전소자에 의하여 흡수된 열이 LED로 역류하기 때문이다. 따라서 열전 소자의 냉각기능을 유지하기 위하는 열의 역류를 제어하여야 하며, 열의 역류는 LED의 온도와 방열장치의 온도 차가 클수록 커진다.

Keywords

References

  1. J. W. Lee, J. W. Lim, and G. H. Lee, The Korean Institute of Illuminating and Electrical Installation Engineers 2010 Spring Annual Conference, pp.59-62 (2010).
  2. J. B. Kim, Telectronics and Telecommunications Trends 24, 61-76 (2009).
  3. T. Y. Nam, D. H. Kim, W. H. Lee, S. J. Kim, B. G. Lee, T. G. Kim, Y. C. Jo, and Y. S. Choi, J. Korean Vaccum Soc. 19, 10-13 (2010). https://doi.org/10.5757/JKVS.2010.19.1.010
  4. C. G. Park, S. M. Cho, and J. S. Kim, The Korean Institute of Illuminating and Electrical Installation Engineers 2009 Autumn Annual Conference, pp.21-23 (2009).
  5. K. Y. Kim and G. G. Ham, The Korean Institute of Illuminating and Electrical Installation Engineers 2009 Spring Annual Conference, pp.214-217 (2009).
  6. D. G. Kwon, N. G. Kim, S. C. Lee, W. S. Jeon, D. Y. Bang, and G. H. Choi, Korean Society for Precision Engineering 2004 Autumn Conference, pp.116-119 (2004).
  7. S. Y. Yu, J. P. Hong, and W. S. Sim, Int. J. Air Conditioning and Refrigeration 16, 62-69 (2004).
  8. M. G. Jang, M. S. Jeon, T. M. No, and J. D. Kim, Telectronics and Telecommunications Trends 23, 12-21 (2008).
  9. J. E. Lee, S. H. Park, K. J. Kim, and D. J. Kim, The Korean Society of Mechanical Engineering 2007 Spring Annual Conference pp.1420-1425 (2007).
  10. B. W. Cho, D. H. Lee, D. Y. Lee, and Y. K. Kim, Korean Society of Road Engineers Journal 12, 93-101 (2010).
  11. J. Y. Kim and M. D. Oh, The Society of Air-Conditioning and Refrigerating Engineers of Korea 2000 Winter Annual Conference (II) pp.664-669 (2000).
  12. D. Gonzalez-Mendizabal, P. Bortot, and A. L. Lopez de Ramos, Int. J. Thermophys. 19, 1129-1138 (1998).
  13. Y. Xi and E. F. Schubert, Appl. Phys. Lett. 85, 2163 (2004). https://doi.org/10.1063/1.1795351
  14. Y. Gu and N. Narendran, Third International Conference on Solid State Lighting. In: I. T. Ferguson, N. Narendran, S. P. DenBaars, J. C. Carrano, Proceedings of the SPIE 5187, 107-114 (2004). https://doi.org/10.1117/12.509751
  15. A. Miner, A. Majumadar, and U. Ghoshal, Thermoelectrics, 1999. Eighteenth International Conference pp.27-30 (1999).
  16. D. Y. Lee, Journal of the Korea Society for Power System Engineering 10, 65-70 (2006).

Cited by

  1. A Study on the Thermal Characteristics of COB LED using Thermoelectric Element vol.9, pp.12, 2014, https://doi.org/10.13067/JKIECS.2014.9.12.1435
  2. A Comparative Analysis of Thermal Properties of COB LED based on Thermoelectric Device Structure vol.15, pp.2, 2015, https://doi.org/10.7236/JIIBC.2015.15.2.189
  3. Influence of Blue-Emission Peak Wavelength on the Reliability of LED Device vol.21, pp.3, 2012, https://doi.org/10.5757/JKVS.2012.21.3.164
  4. Study on the Thermal Dissipation Characteristics of 16-chip LED Package with Chip Size vol.21, pp.4, 2012, https://doi.org/10.5757/JKVS.2012.21.4.185
  5. Development of PRF extractor using thermoelectric element and temperature sensor vol.263, 2017, https://doi.org/10.1016/j.sna.2017.05.017
  6. Study on Metalizing 2% Na-PbTe for Thermoelectric Device vol.10, pp.2, 2014, https://doi.org/10.9797/TSISS.2014.10.2.032
  7. Interface Effect Analysis between Undersea Fiber Optic Cable and Underwater Acoustic channel vol.10, pp.9, 2015, https://doi.org/10.13067/JKIECS.2015.10.9.979
  8. Estimation of heat dissipation through the interchip structure for a multichip light-emitting diode package via simulation vol.14, pp.1, 2013, https://doi.org/10.1080/15980316.2013.773946
  9. Analysis of Temperature and Humidity Characteristics of Air-Cooled Insect-Rearing Equipment Using Thermoelectric Elements vol.19, pp.1, 2018, https://doi.org/10.1007/s42341-018-0003-2