DOI QR코드

DOI QR Code

Dielectric Relaxation and Electrical Conduction Properties of La2NiO4+δ Ceramics

La2NiO4+δ세라믹스의 유전이완 및 전기전도특성

  • Received : 2011.05.18
  • Accepted : 2011.06.07
  • Published : 2011.07.27

Abstract

Thermoelectric power, dc conductivity, and the dielectric relaxation properties of $La_2NiO_{4.03}$ are reported in the temperature range of 77 K - 300 K and in a frequency range of 20 Hz - 1 MHz. Thermoelectric power was positive below 300K. The measured thermoelectric power of $La_2NiO_{4.03}$ decreased linearly with temperature. The dc conductivity showed a temperature variation consistent with the variable range hopping mechanism at low temperatures and the adiabatic polaron hopping mechanism at high temperatures. The low temperature dc conductivity mechanism in $La_2NiO_{4.03}$ was analyzed using Mott's approach. The temperature dependence of thermoelectric power and dc conductivity suggests that the charge carriers responsible for conduction are strongly localized. The relaxation mechanism has been discussed in the frame of the electric modulus and loss spectra. The scaling behavior of the modulus and loss tangent suggests that the relaxation describes the same mechanism at various temperatures. The logarithmic angular frequency dependence of the loss peak is found to obey the Arrhenius law with activation energy of ~ 0.106eV. At low temperature, variable range hopping and large dielectric relaxation behavior for $La_2NiO_{4.03}$ are consistent with the polaronic nature of the charge carriers.

Keywords

References

  1. J. -C. Grenier, N. Lagueyte, A. Wattiaux, J. -P. Doumerc, P. Dordor, J. Etourneau, M. Pouchard, J. B. Goodenough and J. S. Zhou, Phys. C Supercond., 202, 209 (1992). https://doi.org/10.1016/0921-4534(92)90163-7
  2. D. E. Rice and D. J. Buttrey, J. Solid State Chem., 105, 197 (1993). https://doi.org/10.1006/jssc.1993.1208
  3. H. Tamura, A. Hayashi and Y. Ueda, Phys. C Supercond., 216, 83 (1993). https://doi.org/10.1016/0921-4534(93)90636-5
  4. E. Iguchi, H. Satoh, H. Nakatsugawa and F. Munakata, Phys. B Condens. Matter, 270, 332 (1999). https://doi.org/10.1016/S0921-4526(99)00184-2
  5. A. Demourgues, P. Dordor, J. P. Doumerc, J. C. Grenier, E. Marquestaut, M. Pouchard, A. Villesuzanne and A. Wattiaux, J. Solid State Chem., 124, 199 (1996). https://doi.org/10.1006/jssc.1996.0226
  6. C. N. R. Rao, D. J. Buttrey, N. Otsuka, P. Ganguly, H. R. Harrison, C. J. Sandberg and J. M. Honig, J. Solid State Chem., 51, 266 (1984). https://doi.org/10.1016/0022-4596(84)90342-6
  7. J. Zaanen, G. A. Sawatzky and J. W. Allen, Phys. Rev. Lett., 55, 418 (1985). https://doi.org/10.1103/PhysRevLett.55.418
  8. K. K. Singh, P. Ganguly and J. B. Goodenough, J. Solid State Chem., 52, 254 (1984). https://doi.org/10.1016/0022-4596(84)90009-4
  9. M. Sayer and P. Odier, J. Solid State Chem., 67, 26 (1987). https://doi.org/10.1016/0022-4596(87)90334-3
  10. D. C. Johnston, J. P. Stokes, D. P. Goshorn and J. T. Lewandowski, Phys. Rev. B, 36, 4007 (1987). https://doi.org/10.1103/PhysRevB.36.4007
  11. Th. Strangfeld, K. Westerholt and H. Bach, Phys. C Supercond., 183, 1 (1991). https://doi.org/10.1016/0921-4534(91)90758-Q
  12. T. Katsufuji, T. Tanabe, T. Ishikawa, Y. Fukuda, T. Arima and Y. Tokura, Phys. Rev. B, 54, R14230 (1996). https://doi.org/10.1103/PhysRevB.54.R14230
  13. J. M. Bassat, J. P. Loup and P. Odier, J. Phys. Condens. Matter, 6, 8285 (1994). https://doi.org/10.1088/0953-8984/6/40/019
  14. M. Sayer, R. Gehlig and E. Salje, Phil. Mag. B, 47, 229 (1983). https://doi.org/10.1080/13642812.1983.9728299
  15. A. Mansingh, J. M. Reyes and M. Sayer, J. Non - Cryst. Solids, 7, 12 (1972). https://doi.org/10.1016/0022-3093(72)90014-2
  16. H. A. A. Sidek, I. T. Collier, R. N. Hampton, G. A. Saunders and B. Bridge, Phil. Mag. B., 59, 221 (1989). https://doi.org/10.1080/13642818908220173
  17. A. Seeger, P. Lunkenheimer, J. Hemberger, A. A. Mukhin, V. Yu Ivanov, A. M. Balbasov and A. Loidl, J. Phys. Condens. Matter, 11, 3273 (1999). https://doi.org/10.1088/0953-8984/11/16/009
  18. H. Jhans, D. Kim, R. J. Rasmussen and J. M. Honig, Phys. Rev. B, 54, 11224 (1996). https://doi.org/10.1103/PhysRevB.54.11224
  19. W. H. Jung, J. H. Sohn, J. H. Lee, J. H. Sohn, M. S. Park and S. H. Cho, J. Am. Ceram. Soc., 83, 797 (2000).
  20. C. Ang, Z. Yu, Z. Jing, P. Lunkenheimer and A. Loidl, Phys. Rev. B Condens. Matter, 61, 3922 (2000). https://doi.org/10.1103/PhysRevB.61.3922
  21. A. I. Millis, Phys. Rev. B, 53, 8434 (1996). https://doi.org/10.1103/PhysRevB.53.8434
  22. A. I. Millis, Phys. Rev. B, 55, 6405 (1997). https://doi.org/10.1103/PhysRevB.55.6405
  23. M. Jaime, M. B. Salamon, M. Rubinstein, R. E. Treece, J. S. Horwitz and D. B. Chrisey, Phys. Rev. B, 54, 11 (1996).
  24. S. Pal, A. Banerjee, E. Rozenberg and B. K. Chaudhuri, J. Appl. Phys., 89, 4955 (2001). https://doi.org/10.1063/1.1362411
  25. G. Jakob, W. Westerburg, F. Martin and H. Adrian, Phys. Rev. B Condens. Matter, 58, 14966 (1998). https://doi.org/10.1103/PhysRevB.58.14966
  26. E. Quenneville, M. Meunier, A. Yelon and F. Morin, J. Appl. Phys., 90(4), 1891 (2001). https://doi.org/10.1063/1.1385356
  27. W. H. Jung, Kor. J. Mater. Res., 18(4), 175 (2008) (in Korean). https://doi.org/10.3740/MRSK.2008.18.4.175
  28. M. F. Hundley and J. J. Neumeier, Phys. Rev B., 55(17), 11511 (1997). https://doi.org/10.1103/PhysRevB.55.11511
  29. T. T. M. Palstra., A. P. Ramirez, S. W. Cheong, B. R. Zegarski, P. Schiffer and J. Zaanen, Phys. Rev. B., 56, 5104 (1997).
  30. J. M. D. Coey, M. Viret and S. Von Molnar, Adv. Phys., 48, 167 (1999). https://doi.org/10.1080/000187399243455
  31. P. Mandal, Phys. Rev. B Condens. Matter, 61, 14675 (2000). https://doi.org/10.1103/PhysRevB.61.14675
  32. N. F. Mott, Adv. Phys., 39, 55 (1990). https://doi.org/10.1080/00018739000101471
  33. N. F. Mott, J. Phys. Condens. Matter, 5, 3487 (1993). https://doi.org/10.1088/0953-8984/5/22/003
  34. W. H. Jung, Kor. J. Mater. Res., 19(4), 186 (2009) (in Korean). https://doi.org/10.3740/MRSK.2009.19.4.186
  35. W. H. Jung, Mater. Lett., 61, 2274 (2007). https://doi.org/10.1016/j.matlet.2006.08.066
  36. G. N. Greaves, J. Non-Cryst. Solids, 11, 427 (1973). https://doi.org/10.1016/0022-3093(73)90089-6
  37. A. Karmakar, S. Majumdar and S. Giri, Phys. Rev. B Condens. Matter, 79, 94406 (2009). https://doi.org/10.1103/PhysRevB.79.094406
  38. P. B. Macedo, C. T. Moynihan and R. Bose, Phys. Chem. Glasses, 13, 171 (1972).
  39. A. Dutta and T. P. Sinha, J. Alloy. Comp., 509, 1705 (2011). https://doi.org/10.1016/j.jallcom.2010.10.012
  40. P. K. Bajpai and K. N. Singh, Phys. B Condens. Matter, 406, 1226 (2011). https://doi.org/10.1016/j.physb.2010.12.069
  41. J. Liu, Ch-G. Duan, W. G. Yin, W. N. Mei, R. W. Smith and J. R. Hardy, J. Chem. Phys., 119, 2812 (2003). https://doi.org/10.1063/1.1587685
  42. W. H. Jung, J. Phys. Condens. Matter, 18, 6691 (2006). https://doi.org/10.1088/0953-8984/18/29/010
  43. E. Iguchi, K. Ueda and W. H. Jung, Phys. Rev. B, 54, 17431 (1996).
  44. W. H. Jung H. Nakatsugawa and E. Iguchi, J. Solid State Chem., 133, 466 (1997). https://doi.org/10.1006/jssc.1997.7511