DOI QR코드

DOI QR Code

Preparation of Nano-Sized Tin Oxide Powder from Tin Chloride Solution by Spray Pyrolysis Process

  • Yu, Jae-Keun (Department of Advanced Materials Engineering, Hoseo University) ;
  • Kim, Dong-Hee (Department of Anesthesiology, Dankook University)
  • Received : 2011.04.27
  • Accepted : 2011.06.24
  • Published : 2011.07.27

Abstract

In this study, by using tin chloride solution as a raw material, a nano-sized tin oxide powder with an average particle size below 50 nm is generated by a spray pyrolysis process. The properties of the generated tin oxide powder depending on the inflow speed of the raw material solution are examined. When the inflow speed of the raw material solution is 2 ml/min, the majority of generated particles appear in the shape of independent polygons with average size above 80-100 nm, while droplet-shaped particles show an average size of approximately 30 nm. When the inflow speed is increased to 5 ml/min, the ratio of independent particles decreases, and the average particle size is approximately 80-100 nm. When the inflow speed is increased to 20 ml/min, the ratio of droplet-shaped particles increases, whereas the ratio of independent particles with average size of 80-100 nm decreases. When the inflow speed is increased to 100 ml/min, the average size of the generated particles is around 30-40 nm, and most of them maintain a droplet shape. With a rise of inflow speed from 2 ml/min to 5 ml/min, a slight increase of the XRD peak intensity and a minor decrease of specific surface area are observed. When the inflow speed is increased to 20 ml/min, the XRD peak intensity falls dramatically, although a significant rise of specific surface area is observed. When the inflow speed is increased to 100 ml/min, the XRD peak intensity further decreases, while the specific surface area increases.

Keywords

References

  1. J. K. Yu, S. G. Kang, K. C. Jung. J. S. Han and D. H. Kim, Mater. Trans., 48, 249 (2007). https://doi.org/10.2320/matertrans.48.249
  2. J. K. Yu, G. H. Kim, T. S. Kim and J. Y. Kim, Mater. Trans., 46, 1695 (2005). https://doi.org/10.2320/matertrans.46.1695
  3. D. Majumdar, T. A. Shefelbine, T. T. Kodas and H. D. Glicksman, J. Mater. Res., 11, 2861 (1996). https://doi.org/10.1557/JMR.1996.0361
  4. M. A. A. Elmasry, A. Gaber and E. M. H. Khater, Powder Tech., 90, 165 (1997). https://doi.org/10.1016/S0032-5910(96)03220-2
  5. T. C. Pluym, T. T. Kodas, L. -M. Wang and H. D. Glicksman, J. Mater. Res., 10, 1661 (1995). https://doi.org/10.1557/JMR.1995.1661
  6. G. L. Messing, S. C. Zhang and G. V. Jayanthi, J. Am. Ceram. Soc., 76, 2707 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb04007.x
  7. A. Antony, M. Nisha, R. Manoj and M. K. Jayaraj, Appl. Surf. Sci., 225, 294 (2004). https://doi.org/10.1016/j.apsusc.2003.10.017
  8. L. R. Cruz, C. Legnani, I. G. Matoso, C. L. Ferreira and H. R. Moutinho, Mater. Res. Bull., 39, 993 (2004). https://doi.org/10.1016/j.materresbull.2004.03.008
  9. Y. Hu, X. Diao, C. Wang, W. Hao and T. Wang, Vacuum, 75, 183 (2004). https://doi.org/10.1016/j.vacuum.2004.01.081
  10. J. K. Yu, S. G. Kang, J. B. Kim, J. Y. Kim, J. S. Han, J. W. Yoo, S. W. Lee and Z. S. Ahn, Mater. Trans., 47, 1838 (2006). https://doi.org/10.2320/matertrans.47.1838