DOI QR코드

DOI QR Code

Ultrasonic Extraction of Phenolic Compounds from Laminaria japonica Aresch Using Ionic Liquid as Extraction Solvent

  • Han, Dandan (Department of Chemical Engineering, Inha University) ;
  • Zhu, Tao (Department of Chemical Engineering, Inha University) ;
  • Row, Kyung-Ho (Department of Chemical Engineering, Inha University)
  • Received : 2011.03.05
  • Accepted : 2011.05.12
  • Published : 2011.07.20

Abstract

An ionic liquid-based ultrasonic-assisted extraction method has been successfully applied to the effective extraction of phenolic compounds from Laminaria japonica Aresch. Three kinds of 1-alkyl-3-methyl-imidazolium with different cations and anions were evaluated for extraction efficiency. The results showed that both the characteristics of anions and cations have remarkable effects on the extraction efficiency. In addition, the ionic liquid-based ultrasonic-assisted extraction procedure was also optimized on some extraction parameters, such as ultrasonic power, extraction time and solid-liquid ratio. Compared with the conventional solvent, the optimum approach gained the highest extraction efficiency within the shortest extraction time. Average recoveries of phenolic compounds were from 75.5% to 88.3% at three concentration levels.

Keywords

References

  1. Podkorytova, A. V.; Vafina, L. H.; Kovaleva, E. A.; Mikhailov, V. I. J. Appl. Phycol. 2007, 19, 827. https://doi.org/10.1007/s10811-007-9256-6
  2. Wang, W. J.; Wang, G. C.; Zhang, M.; Tseng, C. K. J. Integr. Plant Biol. 2005, 479, 1009.
  3. Kim, K. H.; Kim, Y. W.; Kim, H. B.; Lee, B. J.; Lee, D. S. Biotechnol. Lett. 2006, 28, 439. https://doi.org/10.1007/s10529-005-6177-9
  4. Onofrejova, L.; Vasiekova, J.; Klejdus, B.; Stratil, P.; Misurcova, L.; Kraemar, S.; Kopecky, J.; Vacek, J. J. Pharm. Biomed. Anal. 2010, 51, 464. https://doi.org/10.1016/j.jpba.2009.03.027
  5. Jeong, J. B.; Hong, S. C.; Jeong, H. J. Phytomedicine 2009, 16, 85. https://doi.org/10.1016/j.phymed.2008.09.013
  6. Horvath, E.; Pal, M.; Szalai, G.; Paldi, E.; Janda, T. Biol. Plant 2007, 51, 480. https://doi.org/10.1007/s10535-007-0101-1
  7. Naghibi, B.; Ghafghazi, T.; Hajhashemi, V.; Talebi, A.; Taheri, D. Toxicology 2007, 232, 192. https://doi.org/10.1016/j.tox.2007.01.005
  8. Welton, T. Chem. Rev. 1999, 99, 2071. https://doi.org/10.1021/cr980032t
  9. Liu, Y.; Zhao, E.; Zhu, W.; Gao, H.; Zhou, Z. J. Chromatogr. A 2009, 1216, 885. https://doi.org/10.1016/j.chroma.2008.11.076
  10. Pena, M. T.; Casais, M. C.; Mejuto, M. C.; Cela, R. J. Chromatogr. A 2009, 1216, 6356. https://doi.org/10.1016/j.chroma.2009.07.032
  11. He, Y.; Pohl, J.; Engel, R.; Rothman, L.; Thomas, M. J. Chromatogr. A 2009, 1216, 4824. https://doi.org/10.1016/j.chroma.2009.04.028
  12. Zhou, Q.; Zhang, X.; Xiao, J. J. Chromatogr. A 2009, 1216, 4361. https://doi.org/10.1016/j.chroma.2009.03.046
  13. Du, F. Y.; Xiao, X. H.; Luo, X. J.; Li, G. K. Talanta 2009, 78, 1177. https://doi.org/10.1016/j.talanta.2009.01.040
  14. Zhang, L.; Geng, Y.; Duan, W.; Wang, D.; Fu, M.; Wang, X. J. Sep. Sci. 2009, 32, 3550. https://doi.org/10.1002/jssc.200900413
  15. Cao, X.; Ye, X.; Lu, Y.; Yu, Y.; Mo, W. Anal. Chim. Acta 2009, 640, 47. https://doi.org/10.1016/j.aca.2009.03.029
  16. Onofrejova, L.; Vasiekova, J.; Klejdus, B.; Stratil, P.; Misurcova, L.; Kraemar, S.; Kopecky, J.; Vacek, J. J. Pharm. Biomed. Anal. 2010, 51, 464. https://doi.org/10.1016/j.jpba.2009.03.027
  17. Anderson, J. L.; Ding, J.; Welton, T.; Armstrong, D. W. J. Am. Chem. Soc. 2002, 124, 14247. https://doi.org/10.1021/ja028156h
  18. Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.; Broker, G. A.; Rogers, R. D. Green Chem. 2001, 3, 156. https://doi.org/10.1039/b103275p
  19. Du, F. Y.; Xiao, X. H.; Li, G. K. Chin. J. Anal. Chem. 2007, 35, 1570.

Cited by

  1. Extraction, Preconcentration and Isolation of Flavonoids from Apocynum venetum L. Leaves Using Ionic Liquid-Based Ultrasonic-Assisted Extraction Coupled with an Aqueous Biphasic System vol.21, pp.3, 2016, https://doi.org/10.3390/molecules21030262
  2. Optimisation of ultrasound-assisted extraction conditions for phenolic content and antioxidant activities of the alga Hormosira banksii using response surface methodology vol.29, pp.6, 2017, https://doi.org/10.1007/s10811-017-1162-y
  3. Extraction and Separation of Eight Ginsenosides from Flower Buds of Panax Ginseng Using Aqueous Ionic Liquid-Based Ultrasonic-Assisted Extraction Coupled with an Aqueous Biphasic System vol.24, pp.4, 2019, https://doi.org/10.3390/molecules24040778
  4. Ultrasound-Assisted Extraction of Phenolics from Longan (Dimocarpus longan Lour.) Fruit Seed with Artificial Neural Network and Their Antioxidant Activity vol.5, pp.6, 2012, https://doi.org/10.1007/s12161-012-9370-1
  5. Effects of ultrasonic treatments on the polyphenol and antioxidant content of spinach extracts vol.24, pp.None, 2015, https://doi.org/10.1016/j.ultsonch.2014.10.023
  6. Antioxidant Compounds from Vegetable Matrices: Biosynthesis, Occurrence, and Extraction Systems vol.56, pp.12, 2011, https://doi.org/10.1080/10408398.2013.812059
  7. Syrup from Common Date Variety (Phoenix dactylifera L.): Optimization of Sugars Extraction and their Quantification by High Performance Liquid Chromatography vol.15, pp.None, 2011, https://doi.org/10.2174/1573401315666190115160950
  8. Rapid and Efficient Separation of Decursin and Decursinol Angelate from Angelica gigas Nakai using Ionic Liquid, (BMIm)BF4, Combined with Crystallization vol.24, pp.13, 2019, https://doi.org/10.3390/molecules24132390