DOI QR코드

DOI QR Code

Moving Window Principal Component Analysis for Detecting Positional Fluctuation of Spectral Changes

  • Ryu, Soo-Ryeon (Department of Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon National University) ;
  • Noda, Isao (The Procter & Gamble Company) ;
  • Jung, Young-Mee (Department of Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon National University)
  • Received : 2011.03.16
  • Accepted : 2011.05.27
  • Published : 2011.07.20

Abstract

In this study, we proposed a new promising idea of utilizing moving window principal component analysis (MWPCA) as a sensitive diagnostic tool to detect the presence of peak position shift. In this approach, the moving window is constructed from a small data segment along the wavenumber axis. For each window bound by a narrow wavenumber region, separate PCA analysis was applied. Simulated spectra with complex spectral feature variations were analyzed to explore the possibility of MWPCA technique. This MWPCA-based detection of the peak shift, potentially coupled with 2D correlation analysis to provide additional verification, may offer an attractive solution.

Keywords

References

  1. Jung, Y. M.; Noda, I. Appl. Spectrosc. Rev. 2006, 41, 515. https://doi.org/10.1080/05704920600845868
  2. Noda, I.; Ozaki, Y. Two-Dimensional Correlation Spectroscopy: Applications in Vibrational Spectroscopy; John Wiley & Sons,Inc.: New York, 2004.
  3. Czarnik-Matusewicz, B.; Kim, S. B.; Jung, Y. M. J. Phys. Chem. B 2009, 113, 559. https://doi.org/10.1021/jp808396g
  4. Kim, H. J.; Kim, S. B.; Kim, J. K.; Jung, Y. M. J. Phys. Chem. B 2006, 110, 23123. https://doi.org/10.1021/jp0638282
  5. Noda, I.; Dowrey, A. E.; Marcott, C.; Story, G. M.; Ozaki, Y. Appl. Spectrosc. 2000, 54, 236A. https://doi.org/10.1366/0003702001950454
  6. Noda, I. Appl. Spectrosc. 1993, 47, 1329. https://doi.org/10.1366/0003702934067694
  7. Malinowski, E. R. Factor Analysis in Chemistry, 2nd ed.; Wiley: New York, 1991.
  8. Martens, H.; Naes, T. Multivariate Calibration; John Wiley & Sons, Inc.: New York, 1991.
  9. Vandeginste, B. G. M.; Massart, D. L.; Buydens, L. M. C.; De Jong, S.; Lewi, P. J.; Smeyers-Verbeke, J. Handbook of Chemometrics and Qualimetrics: Part B; Elsevier Science B. V.: Amsterdam, Netherlands, 1998; p 88-104.
  10. Brown, S. D.; Sum, S. T.; Despagne, F. Anal. Chem. 1996, 68, 21R.
  11. Booksh, K. S.; Stellman, C. M.; Bell, W. C.; Myrick, M. L. Appl. Spectrosc. 1996, 50, 139. https://doi.org/10.1366/0003702963906500
  12. Westad, F.; Martens, H. Chemom. Intel. Lab. Syst. 1999, 45, 361. https://doi.org/10.1016/S0169-7439(98)00144-0
  13. Brown, T. R.; Stoyanova, R. A. J. Mag. Res. B 1996, 112, 32. https://doi.org/10.1006/jmrb.1996.0106
  14. Siuda, R.; Balecerowska, G.; Aberdam, D. Chemom. Intel. Lab. Syst. 1998, 40, 193. https://doi.org/10.1016/S0169-7439(97)00086-5
  15. Witjes, H.; van den Brink, M.; Melssen, W. J.; Buydens, L. M. C. Chemom. Inrtel. Lab. Syst. 2000, 52, 105. https://doi.org/10.1016/S0169-7439(00)00085-X
  16. Vogt, F.; Booksh, K. Appl. Spectrosc. 2004, 58, 624. https://doi.org/10.1366/000370204774103471
  17. Cloarec, O.; Dumas, M. E.; Trygg, J.; Craig, A.; Braton, R. H.; Lindon, J. C.; Nicholson, J. K.; Holmes, E. Anal. Chem. 2005, 77, 517. https://doi.org/10.1021/ac048803i
  18. Ryu, S. R.; Noda, I.; Jung, Y. M. Appl. Spectrosc. 2010, 64, 1017. https://doi.org/10.1366/000370210792434396
  19. Ryu, S. R.; Noda, I.; Lee, C.-H.; Lee, P. H.; Hwang, H.; Jung, Y. M. Appl. Spectrosc. 2011, 65(4), 359. https://doi.org/10.1366/10-06114
  20. Elomaa, M.; Lochmüller, C. H.; Kudrjashova, M.; Kaljurand, M. Thermochm. Acta 2000, 362, 137. https://doi.org/10.1016/S0040-6031(00)00581-5
  21. Sanchez, F. C.; Rutan, S. C.; Garcia, M. D. G.; Massart, D. L. Chemomet. Intell. Lab. Syst. 1997, 36, 153. https://doi.org/10.1016/S0169-7439(96)00058-5
  22. Maeder, M. Anal. Chem. 1987, 59, 527. https://doi.org/10.1021/ac00130a035
  23. Windig, W. Chemom. Intell. Lab. Syst. 2005, 77, 206. https://doi.org/10.1016/j.chemolab.2004.10.008
  24. Gourvenec, S.; Massart, D. L.; Rutledge, D. N. Chemom. Intell. Lab. Syst. 2002, 61, 51. https://doi.org/10.1016/S0169-7439(01)00172-1
  25. Rutledge, D. N.; Barros, A. S. Anal. Chim. Acta 2002, 454, 277. https://doi.org/10.1016/S0003-2670(01)01555-0

Cited by

  1. Monitoring of Nonlinear Time-Delay Processes Based on Adaptive Method and Moving Window vol.2014, pp.1563-5147, 2014, https://doi.org/10.1155/2014/546138
  2. Design of a New Concentration Series for the Orthogonal Sample Design Approach and Estimation of the Number of Reactions in Chemical Systems vol.69, pp.11, 2015, https://doi.org/10.1366/14-07759
  3. Overlapped moving windows followed by principal component analysis to extract information from chromatograms and application to classification analysis vol.7, pp.7, 2015, https://doi.org/10.1039/C4AY03057E
  4. Relationship between Infrared Peak Maximum Position and Molecular Interactions vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.4011
  5. Close-up view on the inner workings of two-dimensional correlation spectroscopy vol.60, pp.None, 2011, https://doi.org/10.1016/j.vibspec.2012.01.006
  6. Frontiers of two-dimensional correlation spectroscopy. Part 2. Perturbation methods, fields of applications, and types of analytical probes vol.1069, pp.None, 2011, https://doi.org/10.1016/j.molstruc.2014.01.016
  7. Frontiers of Two-Dimensional Correlation Spectroscopy. Part 1. New concepts and noteworthy developments vol.1069, pp.None, 2014, https://doi.org/10.1016/j.molstruc.2014.01.025
  8. 2D-COS-FTIR analysis of high molecular weight poly (N-vinyl carbazole) undergoing phase separation on purification and thermal annealing vol.1175, pp.None, 2011, https://doi.org/10.1016/j.molstruc.2018.07.077