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Variable selection k nearest neighbor QSAR modeling approach was applied to a data set of 80 3-

arylisoquinolines exhibiting cytotoxicity against human lung tumor cell line (A-549). All compounds were

characterized with molecular topology descriptors calculated with the MolconnZ program. Seven compounds

were randomly selected from the original dataset and used as an external validation set. The remaining subset

of 73 compounds was divided into multiple training (56 to 61 compounds) and test (17 to 12 compounds) sets

using a chemical diversity sampling method developed in this group. Highly predictive models characterized

by the leave-one out cross-validated R2 (q2) values greater than 0.8 for the training sets and R2 values greater

than 0.7 for the test sets have been obtained. The robustness of models was confirmed by the Y-randomization

test: all models built using training sets with randomly shuffled activities were characterized by low q2 ≤ 0.26

and R2 ≤ 0.22 for training and test sets, respectively. Twelve best models (with the highest values of both q2

and R2) predicted the activities of the external validation set of seven compounds with R2 ranging from 0.71 to

0.93. 
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Introduction

A large number of anticancer chemotherapeutic agents

have been developed over the last decades. Still, there is no

doubt that further research into the design of novel anti-

cancer compounds with low toxicity and higher selectivity is

needed.1 Isoquinoline analogues of natural or synthetic

antitumor agents have attracted considerable interest as

potent anticancer agents. It has been established that they act

via the inhibition of topoisomerases I (topo I) or II (topo II),

or as DNA intercalators.2 

The synthesis, biological evaluation, and 3D-QSAR studies

of 3-arylisoquinolines were carried out in one of our

laboratories previoulsy.3 These compounds have been shown

to be highly cytotoxic against several types of human tumor

cells. Interestingly, some (but not all) of these compounds

also showed topo I inhibitory activity.4 Indenoisoquinoline

derivatives were thoroughly investigated by the Cushman

group and were also reported to have topo I inhibitory

activity.5 Although these studies have identified important

structural patterns within isoquinolines responsible for their

cytotoxicity, it proved to be difficult to rationalize the

relationships between their topo I inhibitory activity and

cytotoxicity. In the previous paper, a hypothetical pharmaco-

phore model of 3-arylisoquinolines active against human

lung tumor cell (A-549) was proposed based on results of

the Comparative Molecular Field Analysis (CoMFA).6 Sub-

sequent research focused on introducing the various amines

in the C-1 position replacing N-methylpiperazine in 3-

arylisoquinolines and conducting additional studies towards

the antitumor cytotoxicity and topo I inhibition activity of

isoquinolinamines. As a result, water-soluble 3-aryliso-

quinolinamines were identified as potent cytotoxic agents.7

The important insights into rational design of novel potent

comounds could be obtained by studying the relationships

between structure and cytotoxicity of 3-arylisoquinoline

compounds, which could be achieved by using reliable and

robust QSAR approaches. Over the last two decades many

QSAR approaches have been developed. Based on the type

of descriptors used, they can be divided into those utilizing

physicochemical properties of molecules, two-dimensional

(2D) and three-dimensional (3D) QSAR approaches. 

One of the most popular 3D-QSAR methods, CoMFA

developed in mid-eighties8 and other CoMFA-like methods

(some of them are discussed in references9 require spatial

alignment of molecules. CoMFA and many other 3D-QSAR

methods have several shortcomings.10 In many cases, it is

impossible to precisely define a pharmacophore model (i.e.,

specific and characteristic 3D arrangements of chemical

functional groups responsible for biological activity.11 If all

molecules in a dataset are flexible, their unique structural

alignment is impossible. If a spatial structure of a binding

site is known, docking procedures such as DOCK,12 Auto-

Dock,13 Gold,14 FlexiDock,15 FlexX16 and FlexE,17 etc. can

provide the alignment of molecules, which could be used in

3D-QSAR. However, docking algorithms are not accurate

enough to rank the binding energies of molecules.18 This can

lead to non-optimal alignment of ligands, and eventually can

introduce errors in QSAR analysis. On the other hand,

QSAR analysis based on descriptors calculated using mole-
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cular graphs, i.e. structural formulas of compounds (2D-

QSAR) provides an appealing alternative to 3D-QSAR since

the former methods neither require conformational search

nor structural alignment, are faster and easier to implement

in an automated fashion, and are typically characterized by

models with the same or better statistical significance and

predictive power. These features also make 2D-QSAR ap-

proaches easily adaptable to the task of database searching,

or virtual screening.19 

We have developed several stochastic variable selection

QSAR procedures including genetic algorithm or simulated

annealing partial least squares (GA/SA-PLS)20 and k-nearest-

neighbor (kNN) QSAR.10,21 As opposed to the conventional

3D-pharmacophore, we have defined a descriptor pharmaco-

phore as a subset of molecular descriptors that give rise to

the most statistically significant QSAR models.19 Typically,

we use these methods with multiple descriptors derived from

2D molecular topology, which eliminates the conformational

and alignment ambiguities inherent in most 3D-QSAR ap-

proaches. Stochastic optimization algorithms such as GA or

SA are used to develop a robust QSAR model that is

characterized by the highest value of cross validated R2 (q2).

By default, the descriptor pharmacophore corresponds to a

variable selection model with a local maximum of q2. These

methods are computationally efficient and automated and

they have been used to generate predictive models that are

comparable to, or better than, those obtained with CoMFA.22

In this paper, we have applied the kNN QSAR approach

and rigorous model validation procedures to a dataset of 80

antitumor 3-arylisoquinolines that were synthesized and

evaluated previously.6 Our results demonstrate the effective-

ness of the kNN QSAR approach and provide rationale for

further design and synthesis of novel potent antitumor agents.

Methods

Cytotoxicity Measurements. The structures of 80 com-

pounds used for building kNN models are shown in Schemes 16

Scheme 1. Structure of the training set compounds (1). 

Scheme 2. Structure of the training set compounds (2).
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and 2.4a In Table 1, the cytotoxicities of 57 compounds (1-9)

are listed and those for the remaining 23 compounds (10-16)

are listed in Table 2. Cytotoxicity (IC50 value) was obtained

by the National Cancer Institute protocol based on the

sulforhodamine B (SRB) method.23 In brief, tumor cells

were cultured to keep logarithmic growth by changing the

medium 24 h before cytotoxicity assays. On the day of the

assay, the cells were harvested by trysinization, counted,

diluted in media and added to 96-well plates. The concent-

ration of tumor cells (A-549) used was 1 × 104 cells per ml.

The cells were then preincubated for 24 h in a 5% CO2

incubator at 37 oC. The compounds dissolved in DMSO

were added to the wells in six 2-fold dilutions starting from

the highest concentrations, and incubated for 48 h in a 5%

CO2 incubator at 37 oC. The final DMSO concentration was

0.05%. At the termination of the incubation, the culture

medium in each well was removed, and the cells were fixed

with cold 10% trichloroacetic acid (TCA) for 1 h at room

temperature. The microplates were washed, dried, and

stained with 0.4% SRB in 1% acetic acid for 30 minutes at

room temperature. The cells were washed again and the

bound stain was solubilized with 10 mM Tris base solution

(pH 10.5), and the absorbances were measured spectro-

photometrically at 520 nm on a microtiter plate reader

(Molecular Devices, Sunnyvale, CA). The data was trans-

formed into Lotus-123 format and survival fractions were

calculated by regression analysis (plotting the cell viability

versus the concentration of the test compound). The IC50

Table 1. Structure and in vitro cytotoxicity (pIC50 values for
inhibiting A549 tumor cell line growth) for 57 compounds included
in the training set

No Compound R1 R2 R3 PIC50

1 1 - - - 8.05

2 2a Me Et H2 5.89

3 2b Me Vinyl H2 5.72

4 2c Me CH2CH(OMe)2 O 6.49

5 2d Me Et O 7.57

6 2e H Et O 4.93

7 2a 5-NMe2 4-OMe H 4.90

8 3b 6-Me 4-Cl H 5.24

9 3c H 2-PMB H 4.12

10 3d H 3-Me H 4.39

11 3e H 4-Br H 4.21

12 3f H 4-Me H 4.52

13 3g H 4-OMe H 3.81

14 3h H 2-CHO Me 3.87

15 3i H 2-CH2OH Me 3.84

16 3j H 2-CH2OPMB Me 4.67

17 3k H 2-CH2CH(OMe)2 Me 3.69

18 3l H 2-vinyl Me 4.22

19 3m H H Me 4.07

20 4a 5-NMe2 4-Cl - 3.84

21 4b 6-Me 2-Cl - 3.88

22 4c 6-Me 2-Me - 3.58

23 4d 6-Me 4-Me - 3.95

24 4e 6-Me H - 3.80

25 4f H 3-Me - 3.77

26 4g H 4-Br - 3.95

27 4h H H - 3.82

28 5a 6-Me 2-Me Bn 4.56

29 5b H 2-Me Bn 3.85

30 5c H H Bn 3.76

31 5d 6-Me 3-Me Bn 6.13

32 5e H H morpholine 3.91

33 5f 6-Me 2-Me NH2 6.76

34 5g H 2-Me NH2 5.50

35 5h H H NH2 5.56

36 5i H H NH-PMB 3.61

37 5j H H piperidine 3.83

38 6a 5-NMe2 2-Me - 4.67

39 6b 5-NMe2 3-Me - 5.03

40 6c 5-NMe2 4-Br - 5.04

41 6d 5-NMe2 4-Cl - 5.13

42 6e 5-NMe2 4-OMe - 4.72

43 6f 5-NMe2 H - 4.83

44 6g 6-Me 2-Me - 5.03

45 6h 6-Me 4-Cl - 5.41

46 6i 6-Me 4-Me - 4.95

47 6j 6-Me H - 5.13

48 6k H 2-Me - 4.23

49 6l H 3-Me - 4.67

50 6m H 4-Br - 4.73

51 6n H 4-Cl - 4.68

52 6o H 4-Me - 4.90

53 6p H 4-OMe - 4.75

54 6q H H - 4.47

55 7 - - - 4.63

56 8 - - - 3.69

57 9 - - - 4.60

Table 2. Structure and in vitro cytotoxicity (pIC50 values for
inhibiting A549 tumor cell line growth) for 23 compounds included
in the training set (2)

No Compound R1 R2 pIC50

1 10a H H 4.26

2 10b 6-Me H 4.74

3 10c 6-Me 2'-Me 4.68

4 10d 6-Me 4'-Me 4.57

5 10e 6-Me 2'-Cl 4.87

6 11a H H 4.96

7 11b H 3'-Me 5.09

8 11c H 4'-Me 5.91

9 11d H 4'-Cl 4.93

10 11e H 4'-Br 5.22

11 11f 6-Me 2'-Me 6.36

12 12a H H 3.75

13 12b H 3'-Me 3.99

14 12c 6-Me 3'-Me 3.77

15 12d H 4'-Me 3.77

16 12e 6-Me H 3.91

17 13a H H 5.56

18 13b 6-Me 2'-Me 6.77

19 13c H 2'-Me 5.50

20 14a H H 5.10

21 14b H 2'-Me 4.99

22 15 H H 3.84

23 16 - - 6.28
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values represent the concentrations of the compounds that

inhibit 50% of cell growth. All data represents the average

values for a minimum of three wells. 

Computational Details

MolconnZ 4.05 Descriptors. MolconnZ descriptors were

calculated for all compounds in the dataset. They included

valence, path, cluster, path/cluster and chain molecular con-

nectivity indices,24 kappa molecular shape indices,25 topo-

logical26 and electrotopological27 state indices, differential

connectivity indices,24b,28 graph’s radius and diameter,29

Wiener30 and Platt31 indices, Shannon32 and Bonchev-

Trinajstic33 information indices, counts of different vertices,

counts of paths and edges between different types of

vertices. Descriptors were normalized by range-scaling, so

that they had values within the interval [0,1]. Normalization

was required to prevent unequal descriptor weighting during

the QSAR model generation process.

Dataset Division into Training, Test, and Independent

Validation Sets. It is generally accepted that the internal

validation of QSAR models built for the training set is

sufficient to establish their predictive power.34 However, our

previous studies as well as those conducted by other groups

have demonstrated that there exists no correlation between

leave-one-out (LOO) cross-validated R2 (q2) and the corre-

lation coefficient R2 between the predicted and observed

activities for a test set.9c,35 Our group has advocated repeated-

ly the importance of the external validation that requires an

independent test set for the validation of the model.36 We

have implemented a rational approach based on a sphere-

exclusion algorithm for dividing the dataset into multiple

training and test sets for internal and external validation,

respectively.20b,36 If possible, validation requirements must

include not only test sets, but also a second external test set

(an independent validation set) for the additional validation.37

The independent validation test set should be selected

randomly from the entire dataset in the beginning of the

calculations. It should be used to simulate the use of QSAR

models for new compounds resulting from ongoing experi-

mental projects. 

The dataset of 80 compounds was divided into three

subsets (Figure 1). The first subset of seven compounds was

selected randomly. The remaining 73 compounds were

divided rationally into multiple training and test sets with the

diversity sampling Sphere Exclusion (SE) algorithm. The

Figure 1. QSAR modeling workflow as applied to the dataset of 80 3-arylisoquinolines.

Figure 2. Division of a dataset into training and test sets using
sphere-exclusion algorithm.
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overall modeling workflow incorporating database division

and model building and validation steps is shown in Figure

2.36a 

This procedure starts with the calculation of the pairwise

distance matrix D between all compounds represented by

their descriptors. Let Dmin and Dmax be the minimum and

maximum elements of D, respectively. N probe sphere radii

are defined by the following formulas. Rmin=R1=Dmin,

Rmax=RN=Dmax/4, Ri=R1+(i−1)*(RN−R1)/(N−1), where i=2,

..., N−1. Each probe sphere radius corresponds to one

division into the training and test set. An SE algorithm used

in this study consisted of the following steps. (i) select a

compound randomly. (ii) include it in the training set. (iii)

construct a sphere around this compound. (iv) select

compounds from this sphere and include them alternatively

into test or training sets. (v) exclude compounds considered

in the previous step from further analysis (vi) if no more

compounds left, stop. Otherwise let m be the number of

probe spheres constructed and n be the number of remaining

compounds. Let dij (i=1,..., m; j=1,..., n) be the distances

between the remaining compounds and the probe sphere

centers. Select a compound corresponding to the lowest dij

value and go to step (ii). The training sets were used to build

models and the test sets were used for model testing. The

independent set of seven compounds was used for an

additional external validation.

k-Nearest Neighbor (kNN) QSAR with Variable Selec-

tion. We have described this approach elsewhere21 and pre-

sent here only a brief overview. kNN QSAR is a stochastic

variable selection procedure where the model optimization

is driven by simulated annealing, as illustrated in Figure 3.

The kNN procedure is aimed at the development of the

model with the highest leave-one-out (LOO) cross-validated

correlation coefficient R2 (q2) for the training set. 

 (1)

where N and  are the number of compounds and the

average observed activity of the training set, respectively,

and yi and  are the observed and predicted activities of the

i-th compound, respectively. 

The procedure starts with the random selection of a pre-

defined number of descriptors from all descriptors. Activity

of a compound yi excluded in the LOO cross-validation

procedure is predicted as the weighted average of activities

of its nearest neighbors according to the following formula:

(2)

where dij are distances between the i-th compound and its k

nearest neighbors ( j=1,..., k). The optimal number of nearest

neighbors that yields the highest q2 value is defined as part

of the LOO cross-validation process as well. After each run

of the LOO procedure, a predefined number of descriptors

are randomly changed, and the new value of q2 is calculated.

If q2 (new) > q2(old), the new set of descriptors is accepted.

If q2 (new) ≤ q2(old), the new set of descriptors is accepted

with probability p = exp(q2(new) − q2(old))/T, and rejected

with probability (1−p), where T is a simulated annealing

parameter, “temperature. During the process, T is decreasing

until the predefined value, and when this value is achieved

the optimization process is terminated. 

For each of the six splits into the training and test sets, the

number of descriptors selected in the kNN-QSAR procedure

varied from 6 to 40 with step 2 (18 values). The number of

models built for each pair (split, number of descriptors

selected) was 10. Thus, the total number of models was 10 ×

6 × 18 = 1080. 

Model Validation and the Applicability Domain. QSAR

models were initially validated using test sets. The models

were considered acceptable if the following conditions were

satisfied. (i) q2 > 0.5 for the training set; (ii) correlation

coefficient between predicted and observed activities of the

test set R2 > 0.6; (iii) [R2−R0
2]/R2 < 0.1 and 0.85 < k < 1.15

or [R2− ]/R2 < 0.1 and 0.85 < k' < 1.15, where R0
2 and

 are the coefficients of determination for regressions

through the origin between predicted and observed, and

observed and predicted IC50 values of cytotoxicity for the

test set, respectively, k and k' are the corresponding slopes,

and (iv) |R0
2− | < 0.3. The kNN-QSAR procedure as

described (Figure 3) has been successfully used in our

laboratory for many datasets.21,38

The activity of the test set compounds was predicted only

if these compounds were within the applicability domain of

the respective training set models. We define this domain36a

as a threshold distance in multidimensional descriptor space

between a test set compound and its closest nearest neighbor

in the training set. If the distance is beyond the threshold,

the prediction is not made since it is considered unreliable.

This threshold distance is calculated as D2
cutoff = <D2

nn> +

q
2
 = 1 −
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Figure 3. Flow chart of kNN-QSAR with Variable Selection.
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Z*VAR, where <D2
nn> is the squared mean distance bet-

ween all training set compounds and their k nearest neigh-

bors in the descriptor subspace defined by the descriptors

selected (descriptor pharmacophore), VAR is the variance of

Dnn, and Z is a user-defined parameter (in this studies we

used Z=0.5). 

Training set models that passed our validation criteria (i)-

(iv) were used for the prediction of the independent validation

set of seven randomly selected compounds. 

For our ongoing experimental investigations, we rely on

the consensus prediction, which implies averaging the bind-

ing affinities of each compound predicted by individual

models with best statistics.9d

Y-randomization Test. This is a generally used technique

to establish, if the model is robust, and to exclude the

possibility of overfitting and chance correlation.39 The Y-

randomization test was carried out after dividing the dataset

into training and test sets. The robustness of the models was

examined by comparing the statistics of models developed

for the original dataset with those obtained by using

randomized antitumor activity values of the training set. It is

expected that the latter models should have low q2 values for

the training set and low R2 values for the test set. The Y-

randomization test was repeated five times for each splitting

of the dataset into training and test sets.

Results and Discussion

We now discuss the results of kNN QSAR modeling of 80

3-arylisoquinolines in terms of the optimized q2 values, vari-

able selection, observed vs. predicted activities, statistical

significance and experimental validation.

Development of validated kNN QSAR Models. To establish

reliability and the true predictive power of QSAR models, it

is necessary to demonstrate that they can accurately predict

activities of compounds of external test sets. Generally, we

accept models with q2 values for the training set greater than

0.5 and R2 values for predicted vs. observed activities of the

test set compounds greater than 0.6; other characteristics

should satisfy conditions described in the Methods section.

From the entire dataset of 80 compounds a subset of seven

compounds was randomly excluded as an independent

validation set and the remaining 73 compounds were divided

into six different training and test sets containing 61 and 12,

57 and 16, 60 and 13, 59 and 14, 56 and 17, and 58 and 15

compounds in training and test sets, respectively (Table 3).

The 12 best models were selected from multiple kNN

models. All these models showed good correlation between

q2 (0.81-0.88) and R2 (0.70-0.86). The models with the

highest predictive power were obtained for the test sets with

12 to 17 compounds, with the optimal number of descriptors

ranging between 10 and 28. 

To evaluate the external predictive power of our models,

the predicted activities of the seven compounds set aside as

external validation set were compared with their observed

activities. We used all models that passed our validation

criteria to calculate the predicted activity. The results clearly

demonstrate the high prediction accuracy with R2 values

ranging from 0.71 to 0.93 (Table 4). Model 5 showed best R2

Table 3. Twelve Best kNN Models: statistics for the training and test sets

No training set test set descriptors q
2 R2 k1a k2 bR01

2 R02
2

1 61 12 12 0.82 0.73 1.04 0.95 0.73 0.54

2 57 16 14 0.82 0.73 1.02 0.97 0.73 0.59

3 60 13 10 0.83 0.71 0.96 1.04 0.51 0.70

4 60 13 10 0.88 0.71 0.98 1.01 0.62 0.71

5 59 14 14 0.81 0.73 0.99 1.01 0.60 0.73

6 56 17 12 0.84 0.72 1.02 0.97 0.72 0.66

7 56 17 14 0.83 0.71 1.02 0.97 0.71 0.65

8 56 17 18 0.81 0.70 1.03 0.96 0.69 0.65

9 58 15 18 0.81 0.76 1.01 0.99 0.69 0.76

10 56 17 22 0.81 0.72 1.02 0.97 0.72 0.66

11 58 15 26 0.81 0.86 0.99 1.01 0.76 0.84

12 57 16 28 0.82 0.84 0.98 1.02 0.73 0.83

ak1 and k2 are slopes for regressions through the origin between predicted and observed, and observed and predicted activities of the test set. bR01
2, R02

2:
the coefficients of determination for regressions through the origin between predicted and observed, and observed and predicted activities of the test set.

Table 4. Twelve best kNN models (see Table 3): statistics for
activity prediction for external validation set

No
Compounds 

within ADa q
2 R2 K1 K2 R01

2 R02
2

1 7 0.82 0.71 1.07 0.93 0.71 0.56

2 7 0.82 0.76 1.01 0.98 0.75 0.63

3 7 0.83 0.88 0.99 1.01 0.81 0.87

4 7 0.88 0.91 1.00 1.00 0.87 0.90

5 7 0.81 0.93 1.01 0.99 0.91 0.93

6 7 0.84 0.89 0.99 1.00 0.84 0.88

7 7 0.83 0.82 1.01 0.98 0.80 0.82

8 7 0.81 0.85 1.01 0.99 0.83 0.85

9 7 0.81 0.87 1.01 0.99 0.79 0.86

10 7 0.81 0.86 1.02 0.98 0.85 0.86

11 6 0.81 0.76 0.98 1.01 0.75 0.75

12 4 0.82 0.92 1.01 0.99 0.91 0.87

aAD – Applicability Domain.
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(0.93), R01
2 (0.91) and R02

2 (0.93). 

As discussed in Methods, we also performed the Y-

randomization test. Activities of the training set compounds

were randomized and all the calculations were repeated five

times. The highest training set q2 was 0.26 and the highest

test set R2 was 0.22. These results demonstrate that the

models developed for the actual dataset were robust, and

their high q2 and R2 values could not be explained by over-

fitting or chance correlation.

In summary, the results of activity prediction for compounds

in datasets successfully paralleled those obtained in model

building and validation using internal training and test sets.

This observation agrees with our general experience in

developing QSAR models with the confirmed predictive

power. It emphasizes that before attempting to predict target

properties of untested compounds one should exhaustively

validate QSAR models developed for the training sets both

internally and externally such that only models that pass

rigorous validation criteria should be used for the prediction.

It was interesting to analyze the performance of QSAR

models with respect to distinctive chemical modifications

implied in the design of the external set of new compounds.

Conclusions 

In this study, we have developed and thoroughly validated

QSAR models for a series of 3-arylisoquinoline compounds

that have been studied as potential anticancer agents. We

have demonstrated that the validated kNN QSAR modeling

workflow was successful in generating models with high

internal and external accuracy. These models can be further

exploited for the design and discovery of new, potent anti-

tumor agents by the means of virtual screening of available

chemical databases as discussed in the recent review.40

These virtual screening studies towards the identification

and subsequent testing of novel compounds predicted to

have high antitumor activity are in progress. 
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3e 4.21 4.52 0.31 4.52 0.31 4.52 0.31 4.52 0.31

4b 3.88 3.95 0.07 3.95 0.07 3.95 0.07 3.95 0.07

10c 4.68 4.57 -0.10 4.57 -0.11 4.57 -0.11 4.57 -0.11

4f 3.77 3.8 0.03 3.8 0.03 3.80 0.03 3.80 0.03

11e 5.22 5.07 -0.20 4.93 -0.29 4.93 -0.29 4.93 -0.29

6c 5.04 5.13 0.09 5.13 0.09 5.13 0.09 5.13 0.09

6e 4.72 4.83 0.11 4.57 -0.15 5.13 0.41 5.03 0.31

Model 9 Model 10 Model 11 Model 12

Compd obs pre error Pre error pre error Pre error

3e 4.21 4.52 0.31 4.52 0.31 3.95 -0.26 　- 　-

4b 3.88 3.95 0.07 3.95 0.07 3.84 -0.04 3.84 -0.04

10c 4.68 4.87 0.19 4.57 -0.11 4.74 0.06 4.57 -0.11

4f 3.77 3.95 0.18 3.80 0.03 3.80 0.03 3.80 0.03

11e 5.22 4.93 -0.30 5.07 -0.15 4.73 -0.49 　- 　-

6c 5.04 5.13 0.09 5.03 -0.01 　- 　- 　- 　-

6e 4.72 4.57 -0.20 5.13 0.41 5.03 0.31 5.03 0.31

aobs: observed activities. bpre: predicted activities. cerror: standard errors of prediction
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