DOI QR코드

DOI QR Code

The geometry change of carbon nanofilaments by SF6 incorporation in a thermal chemical vapor deposition system

  • Kim, Sung-Hoon (Department of Engineering in Energy & Applied Chemistry, Silla University)
  • Received : 2011.05.26
  • Accepted : 2011.06.10
  • Published : 2011.06.30

Abstract

Carbon nanotilaments (CNFs) could be synthesized on nickel catalyst layer-deposited silicon oxide substrate using $C_2H_2$ and$H_2$ as source gases under thermal chemical vapor deposition system. By the incorporation of $SF_6$ as a cyclic modulation manner, the geometries of carbon coils-related materials, such as nano-sized coil and wave-like nano-sized coil could be observed on the substrate. The characteristics (formation density and morphology) of as-grown CNFs with or without $SF_6$ incorporation were investigated. Diameter size reduction for the individual CNFs-related shape and the enhancement of the formation density of CNFs-related material could be achieved by the incorporation of $SF_6$ as a cyclic modulation manner. The cause for these results was discussed in association with the slightly increased etching ability by $SF_6$ addition and the sulfur role in SF 6 for the geometry change.

Keywords

References

  1. S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smaley, L.J. Geerligs and C. Dekker, "Individual single-wall carbon nanotube as quantum wires", Nature 386 (1997) 474. https://doi.org/10.1038/386474a0
  2. L. Marty, V. Bouchiat, A.M. Bonnot, M. Chaumont, T. Foutnier, S. Decossas and S. Roche, "Batch processing of nanometer-scale electrical circuitry based on in-situ grown single-walled carbon nanotubes", Microelectronic Engineering 61-62 (2002) 485. https://doi.org/10.1016/S0167-9317(02)00487-2
  3. L.J. Pan, T. Hayashida, M. Zhang, Y. Nakayama, "Field emission properties of carbon tubule nanocoils", Jpn. J. Appl. Phys. 40 (2001) L235. https://doi.org/10.1143/JJAP.40.L235
  4. S. Amelinckx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov and J. B. Nagy, "A formation mechanism for catalytically grown helix-shaped graphite nanotubes", Science 265 (1994) 635. https://doi.org/10.1126/science.265.5172.635
  5. A. Fonseca, K. Hernadi, J.B. Nagy, Ph. Lambin and A. Lucas, "Growth mechanism of coiled carbon nanotubes", Carbon 33 (1995) 1759. https://doi.org/10.1016/0008-6223(95)00150-3
  6. K. Akagi, R. Tamura and M. Tsukada, "Electronic structure of helically coiled cage of graphitic carbon", Phys. Rev. Lett. 74 (1995) 2307. https://doi.org/10.1103/PhysRevLett.74.2307
  7. D.S. Bethune, C.H. Kiang, M.S. Devries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers, "Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls", Nature 363 (193) 605.
  8. M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto and D.R.M. Walton, "Controlled production of aligned-nanotube bundles", Nature 388 (1997) 52. https://doi.org/10.1038/40369
  9. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fisher and R.E. Smalley, "Crystalline ropes of metallic carbon nanotubes", Science 273 (1996) 483. https://doi.org/10.1126/science.273.5274.483
  10. W.Z. Li, S.S. Xie, L.X. Qain, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao and G. Wang, "Large-scale synthesis of aligned carbon nanotubes", Science 274 (1996) 1701. https://doi.org/10.1126/science.274.5293.1701
  11. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Sigal and P.N. Provencio, "Synthesis of large arrays of well-aligned carbon nanotubes on glass", Science 282 (1998) 1105. https://doi.org/10.1126/science.282.5391.1105
  12. K.-D. Kim, S.-H. Kim, N.S. Kim and D.-U. Kim, "Effect of the on/off cyclic modulation time ratio of $C_{2}H_{2}/H_{1}$ flow on the low temperature deposition of carbon nanofilaments", J. Nanosci. Nanotechnol. 7 (2007) 3969. https://doi.org/10.1166/jnn.2007.091
  13. A. Moisala, A.G. Nasibulin and E.I. Kauppinen, "The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes-a review", J Phys: Condens Matter 15 (2003) S3011. https://doi.org/10.1088/0953-8984/15/42/003
  14. A.C. Dupuis, "The catalyst in the CCVD of carbon nanotubes- a review", Prog. Mater. Sci. 50 (2005) 929. https://doi.org/10.1016/j.pmatsci.2005.04.003
  15. X. Chen and S. Motojima, "Morphology of the growth tip of carbon microcoils/ nanocoils", Carbon 37 (1999) 1817. https://doi.org/10.1016/S0008-6223(99)00054-8
  16. S. Motojima, S. Asakura, T. Kasemura, S. Takeuchi and H. Iwanaga, "Electrical properties of carbon micro coils", Carbon 34 (1996) 289. https://doi.org/10.1016/0008-6223(95)00169-7

Cited by

  1. The Formation of the Carbon Microcoils without the Catalyst on the Mesh-Type Stainless Steel Substrate vol.894, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.894.116