DOI QR코드

DOI QR Code

Leader-following Approach Based Adaptive Formation Control for Mobile Robots with Unknown Parameters

미지의 파라미터를 갖는 이동 로봇들을 위한 선도-추종 방법 기반 적응 군집 제어

  • Received : 2011.02.01
  • Accepted : 2011.07.01
  • Published : 2011.08.01

Abstract

In this paper, a formation control method based on the leader-following approach for nonholonomic mobile robots is proposed. In the previous works, it is assumed that the followers know the leader's velocity by means of communication. However, it is difficult that the followers correctly know the leader's velocity due to the contamination or delay of information. Thus, in this paper, an adaptive approach based on the parameter projection algorithm is proposed to estimate the leader's velocity. Moreover, the adaptive backstepping technique is used to compensate the effects of a dynamic model with the unknown time-invariant and time-varying parameters. From the Lyapunov stability theory, it is proved that the errors of the closed-loop system are uniformly ultimately bounded. Simulation results illustrate the effectiveness of the proposed control method.

Keywords

References

  1. A. K. Das, R. Fierro, V. Kumar, J. P. Ostrowski, J. Spletzer, and C. J. Taylor, "A Vision-based formation control framework", IEEE Trans. Robot. Automat., vol. 18, no. 5, pp. 813-825, 2002. https://doi.org/10.1109/TRA.2002.803463
  2. Y. Chen and Z. M. Wang, "Formation control: a review and a new consideration", in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3181- 3186, 2005.
  3. M. A. Lewis and K. -H. Tan, "High precision formation control of mobile robots using virtual structures", Autono. Robots, vol. 4, pp. 387-403, 1997. https://doi.org/10.1023/A:1008814708459
  4. K. D. Do and J. Pan, "Nonlinear formation control of unicycle-type mobile robots", Robot. Auton. Syst, vol. 55, pp. 191-204, 2007. https://doi.org/10.1016/j.robot.2006.09.001
  5. K. D. Do, "Formation tracking control of unicycle-type mobile robots with limited sensing ranges", IEEE Trans. Contr. Syst. Technol., vol. 13, no. 3, pp. 527-538, 2008.
  6. T. Balch and R.C. Arkin, "Behavior-based formation control for multirobot systems", IEEE Trans. Robot. Automat., vol. 14, no. 6, pp. 926-939, 1998. https://doi.org/10.1109/70.736776
  7. S. Monteiro and E. Bicho, "A dynamical systems approach to behavior-based formation control", in Proc. IEEE Int. Conf. on Robot. Automat., pp. 2606-2611, 2002.
  8. J. Shao , G. Xie and L. Wang, "Leader-following formation control of multiple mobile vehicles", IET Control Theory Appl., vol. 1, no. 2, pp. 545-552, 2007. https://doi.org/10.1049/iet-cta:20050371
  9. T. Dierks and S. Jagannathan, "Neural network control of mobile robot formations using RISE feedback", IEEE Trans. Syst. Man and Cybern., vol. 39, no. 2, pp. 332-347, 2009. https://doi.org/10.1109/TSMCB.2008.2005122
  10. J. Sanchez and R. Fierro, "Sliding mode control for robot formations", in Proc. IEEE Int. Symp. on Intelligent Control, pp. 438-443, 2003.
  11. K. Choi, S. J. Yoo, J. B. Park, and Y. H. Choi, "Adaptive formation control in absence of leader's velocity information", IET Control Theory Appl., vol. 4, no. 4, pp. 521-528, 2010. https://doi.org/10.1049/iet-cta.2009.0074
  12. Y. Kanayama, Y. Kimura, F. Miyazaki and T. Noguchi, "A stable tracking control method for a nonholonomic mobile robot", in Proc. IEEE/RSJ Int. Workshop Intelligent Robots and Systems, pp. 1236-1241, 1991.
  13. S. S. Ge and J. Wang, "Robust adaptive tracking for time-varying uncertain nonlinear systems with unknown control coefficients", IEEE Trans. Automat. Contr., vol. 48, no. 8, pp. 1463-1468, 2003. https://doi.org/10.1109/TAC.2003.815049
  14. T. Fukao, H. Nakagawa and N. Adachi, "Adaptive tracking control of a nonbolonomic mobile robot, IEEE Trans. Robot. Automat., vol. 16, no. 5, pp. 609-615, 2000. https://doi.org/10.1109/70.880812
  15. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall, Englewoods Cliffs, NJ: 1991.

Cited by

  1. Multi-robot Mapping Using Omnidirectional-Vision SLAM Based on Fisheye Images vol.36, pp.6, 2014, https://doi.org/10.4218/etrij.14.0114.0584
  2. Multi-Robot Avoidance Control Based on Omni-Directional Visual SLAM with a Fisheye Lens Camera vol.19, pp.10, 2018, https://doi.org/10.1007/s12541-018-0173-1