방사선이 조사된 세포막 모델이 물질의 능동수송에 미치는 영향

고인호*, 여진동**

제주한라대학 방사선과*, 서라벌대학 방사선과**

Effect on active transport of cell membrane model which irradiated by radiation.

Inho Ko^{*}, Jindong Yeo^{**}

Dept. of Radiological Technology, Cheju Halla College^{*}, Dept. of Radiological Technology, Sorabol College^{**}

요약

방사선이 조사된 세포막 모델에서 K⁺와 Na⁺의 능동전달 효과에 대해서 연구하였다. 이 실험에 사용된 세포막 모델 은 스티렌과 디비닐벤젠의 슬폰화 혼성중합막이다. 이온의 초기플럭스는 양쪽의 H⁺ 이온농도 증가와 함께 증가하였다. 실험범위 pH 0.5⁻³에서 방사선이 조사되지 않은 막의 K⁺의 초기 플럭스는 7.9x10⁻⁴ −7.49x10⁻³ mole/cm² · h이고 Na⁺의 초기 플럭스는 10.6x10⁻⁴ − 7.68x10⁻³ mole/cm2 · h이다.

방사선이 조사된 막의 K⁺의 초기 플럭스는 35.0x10⁻⁴ - 42.4x10⁻³ mole/cm2 · h 이고 Na⁺의 초기 플럭스는 52.0x10⁻⁴ - 43.3x10⁻³ mole/cm² · h이다.

막은 K⁺를 선택하였고 K⁺/ Na⁺의 비는 약 1.1이다. 조사된 막의 pH의 구동력은 조사되지 않은 막보다 약 3−4배 정 도 유의 있게 증가하였다.

세포막 모델의 K⁺와 Na⁺의 능동전달이 비정상적이기 때문에 세포장해가 세포에서 나타나게 된다.

중심단어 : ⁶⁰Co y-ray,, 칼륨양이온, 나트륨양이온, 수소양이온, 슬폰화 혼성중합막

Abstract

The effect on active transport of K^{+} and Na^{+} of cell membrane model which irradiated by radiation was investigated. The cell membrane model used in this experiment was a Na^{+} type sulfonated copolymerized membrane of styrene and divinylbenezene.

The initial flux of the ion was increased with increase of both H^+ ion concentration. In this experiment range(pH 0.5⁻³), the initial flux of K^+ which was not irradiated by radiation was found to be from 7.9×10^{-4} to 7.49×10^{-3} mole/cm² · h and that of Na+ from 10.6×10^{-4} to 7.68×10^{-3} mole/cm² · h. The initial flux of K^+ which was irradiated by radiation was found to be from 35.0×10^{-4} to 42.4×10^{-3} mole/cm² · h and that of Na+ from 52.0×10^{-4} to 43.3×10^{-3} mole/cm² · h. The membrane was selective for K⁺ and the ratio K⁺/Na⁺ was about 1.10. And the driving force of pH of irradiated membrane was significantly increased about 4–5 times than membrane which was not irradiated.

As active transport of K⁺ and Na⁺ of cell membrane model were abnormal, cell damages were appeared at

cell.

Key Words : ⁶⁰Co g-ray, K⁺, Na⁺, pH, sulfonated copolymerized membrane

I. 서 론

단세포 생물인 박테리아를 비록하여 고등 동·식물 은 세포외부와 세포내부사이의 물질전달이 세포막을 통하여 이루어지고 있으며 특히, 세포내부에 있은 세 포소기관중 미토콘드리아, 핵, 엽록체 등도 세포막처 럼 이중막으로 되어 있어 세포내부에서도 상호간의 물질교환이 이루어지고 있다^{[11,[2],[3].}

이와 같이 세포막은 세포외·내부의 생리적 대사에 중요한 역할을 담당하고 있으며 세포의 구조와 생명 현상을 유지하는데 없어서는 안 되는 세포의 구성성 분이며 유·무기질의 물질전달은 능동수송(active transport), 수동수송(passive transport)에 의해서 이루어 진다^[4].

여기서 세포막의 능동수송은 물질수송이 저 농도에 서 고농도로 이동할 때 발생하며 또한 에너지가 부가 되어야하는데 이 때 사용되는 생화학적 에너지로는 ATP이며 그리고 조효소, 효소 등 막 단백질이 작용한 다.

또한 능동수송(active transport)은 병류수송 (co-transport)과 향류수송(counter transport)으로 나누고 음이온의 전달시 H⁺이온과 음이온이 동시에 이온쌍을 만들어 전달자와 복합체를 형성하여 병류수송이 이루 어지고 양이온의 전달시는 H⁺이온이 에너지를 제공하 여 H+이온과 양이온이 각각 전달자와 복합체를 형성 하여 반대방향으로 전달되는 향류수송이 있다^{[5],[6],[7]}.

한편 Yoshikawa^[13]는 고정전달자가 있는 고분자 막 에서의 능동전달에 대한 관계식으로 아래 식을 제안 하였다.

$$J = \frac{k}{L} \times \frac{k[C]o\ [S]\ [S']}{1+k[S]}$$

여기서

J : 초기플럭스

k : 복합체 생성상수(고정 전달자 : SO32-, 알칼리 금속

세포막의 수동수송(passive transport)은 물질수송이 고 농도에서 저 농도로 이동하는 물질전달현상으로 에너지가 부가될 필요가 없은데 삼투, 확산등이 이에 해당된다^{[8],[9]}.

막에 대한 방사선의 작용연구는 주로 적혈구 막에 서 이루어지고 있은 실정이며 세포막의 작용 중 물질 수송은 투과성에의해서 결정되는데 세포내부는 칼륨 (K^{*})농도가 높고 세포외부는 나트륨(Na^{*})농도가 높은 데 방사선 조사로 인하여 적혈구 막의 이온 투과성이 상실되어 세포내부는 나트륨(Na^{*}) 농도가 높아지고 세 포외부는 칼륨(K^{*})농도가 높아져서 막의 구조변화로 적혈구가 치사된다^[10].

1961년 Bacq와 Aloxander등의 "효소방출설"에 의하 면 고선량의 방사선이 생물 막에 조사되면 막을 구성 하고 있은 효소가 방출되어 세포내의 구성성분인 핵 산, 단백질 등을 분해하여 결국에는 세포가 치사된다 는 이론이며 이 이론은 선량이 고 선량이 일 때만 가 능하고 저 선량에는 발생하지 않는 이론이어서 어느 정도의 한계를 지닌 이론이다.

본 연구는 최근에 생물 막과 유사한 이온투과성막 (양 이온교환막, 음 이온교환막)을 이용한 물질의 능동 수송(active transport)에 대한 연구보고가 많이 있으나 고 선량의 방사선조사로 인한 이온투과성변화에 대한 연구는 미비한 실정이다^[11].

이에 따라서 방사선이 조사된 세포막이 물질의 능 동수송(active transport)에 의해서 발생하는 이온투과성 변화에 어느 정도의 영향을 미치는가를 구명하기 위 하여 생물 막과 유사한 이온투과성막을 고분자로 제

104-

조한 후 이 생물 막의 이온투과성 변화가 방사선조사

전·후에 어떻게 변화하는가를 알아보기 위하여 물 질의 능동수송(active transport)을 통하여 실험을 하였 다.

Ⅱ. 실험재료 및 방법

1. 실험재료

1) 고분자막(polysulfone)의 구성

고분자막은 Na+-K+이온투과성을 선택적으로 측정 할 수 있은 이온투과성 막으로서 최근 연구에 많이 이 용되고 있은 polysulfone계 고분자 복합막인 슬폰화 폴 리스티렌-디비닐벤젠(polystyrene divinylbenzene) 혼성 중합막을 사용하였다.

반응기, Magnetic Stirrer, 분광광도계(Shimadzu UV-2401PC, Japan), 전도도측정기(suntex, model Sc-17A), pH

2) 실험기기

Fig. 1. Experimental apparatus for transport measurement Left cell : 0.1 N KCI, 0.1 N HCI, or 0.1 N NaCI, 0.1 N HCI Right cell : 0.1 N KOH, or 0.1 N NaOH

3) 전해질 용액의 Na+농도와 K+농도변화

고분자막은 세포막에 대응되는 생물 막으로서 좌측 cell에 0.1N KCl, 0.1N HCl or 0.1N Nacl, 0.1N HCl solution과 우측cell에 0.1N KOH, or 0.1N NaOH solution사이의 Na+-K+이온투과성에 대하여 5Gy의 고 선량조사를 한 후 이온투과성과 방사선조사 전의 이 온투과성을 비교 연구하기 위하여 사용하였다.

좌측 cell에 0.1N KCl, 0.1N HCl or 0.1N Nacl, 0.1N HCl solution과 우측cell에 0.1N KOH, or 0.1N NaOH solution는 water jacket으로 인체의 체온과 같은 36.5℃ 를 유지하였고 Na⁺농도와 K⁺농도는 방사선 5Gy로 조 사한 생물 막과 조사하지 않은 생물 막으로 각각 상호 교환을 하여 마이크로피펫으로 각각 샘플링을 하고 그 농도를 원자흡광분석기로 검량선을 통하여 측정하 였다.

2. 실험 장치

본 실험에서는 전해질 용액에서 다양한 변수들의 변화가 Na+-K+의 플럭스에 어느 정도의 영향을 미치 는가를 정량화하기 위하여 Fig.1과 같은 실험장치를 pyrex유리로 제작하여 실험하였다

3. 실험 방법

1) 막의 특성 실험

본 실험에서는 슬폰화 폴리스티렌-디비닐벤젠 혼성 중합막을 사용하여 막의 특성을 이온교환용량(AR), 함 수율(w), 고정이온농도(Aw)를 통하여 측정하였다.

시료막인 슬폰화 폴리스티렌-디비닐벤젠 혼성중합 막을 증류수로 세정 한 후 1M HCl 용액 중에 담그고 3일 간 방치한 후 완전히 H⁺형으로 된 시료막을 증류 수로 세척하여 HCl이 더 이상 침출되지 않을 때까지 세정하였다.

이 시료막을 2M NaCl 30mL에 담구었다가 H^{*}를 Na⁺ 로 교환시키고 액중에 유리된 H^{*}를 NaOH 용액으로 적정하였다. Na⁺ 형이된 시료막을 더 이상 Cl⁻ 침출되지 않을 때 까지 증류수로 세척하고 여과지로 닦은 후 빨리 밀폐 용기에 넣고 칭량하였다.

여기서 이온교환용량(AR)은 건조된 수지 1g 중에 고정이온의 밀리당량(meq)으로 구하였다.

AR = meq/g dry resin

함수율(w)은 여과지로 닦아내어 칭량한 막과 115℃ 에서 건조시킨 막과의 질량 차이로 구하였으며 수지 중의 물에 대한 고정이온농도(Aw)는 이온교환용량 (AR)과 함수율(w)로부터 구하였다.

Aw = AR/w

2) 능동전달 실험

이온교환막을 8wt % NaOH 수용액 중에서 24시간 방치하여 Na⁺ 형으로 팽윤시켜 모든 실험을 수행하였다.

측정셀은 Fig 1의 장치를 사용하였고 셀은 이중벽으 로 펌프를 사용해 물을 셀내벽과 외벽 사이로 순환시 켜 온도를 일정하게 유지토록 하였다.

셀의 한쪽 부피는 380cm³, 막의 유효면적은 12.5cm² 이다. 셀의 바닥은 평평하게 제작하였으며 자력교반기 로 500rpm으로 용액을 충분히 교반시켜 위치에 따른 측정오차를 제거하였다. 막 양측의 전도도는 전도도측 정기로, 수소이온농도는 pH meter로 기록계를 사용하 여 연속적으로 측정하였다.

용액의 전도도가 이온농도에 비례하므로 전도도 추 이에 따라 2ml 씩 2시간에 한번씩 양쪽셀에서 시료용 액을 채취하여 원자흡광 분석기를 사용하여 금속이온 의 농도를 측정하였다. 본 실험은 온도는 36.5℃로 고 정한 후초기 pH 및 용질의 종류를 변수로 하였다.

막에 대한 5Gy의 선량조사 전 후의 pH에 대한 실험 으로서 온도는 36.5℃로 고정한 후 pH를 0.5, 1.0, 1.5, 2.0, 3.0까지 변화시켜 좌측셀의 용질로는 KCl, HCl을 사용하였으며 우측 셀은 KOH를 사용하였다.

용질을 바꾸어서 좌측 셀의 용질로는 NaCl, HCl을 사용하였으며 우측 셀은 NaOH를 사용하였다.

Ⅲ. 실험결과

1. 막의 특성

실험에 사용한 양이온 교환막의 특성을 측정한 결 과를 Table 1에 나타내었다.

표1. Physical properties of the membrane

Physical property	CMV
히하저 ㅈ서	Copolymer
외국국 조종	(Styrene-DVB)
고영 라니널 AR(meq/g dry resin) 수분함량(%) 두께(mm) Aw(meq/g H2O)	황 라디칼
	2.8
	38
	0.21
	7.3684

2. 능동전달

알칼리금속 이온에 대한 능동전달 현상을 알아 보 기위하여 셀 좌우 각각의 Na⁺, K⁺ 초기농도를 0.1N로 같게 한 후 이온농도의 변화는 시간이 지남에 따라 Na⁺, K⁺ 초가 좌측셀은 증가하였고 우측셀에서는 감소 하였다. 이는 Na⁺, K⁺가 농도차에 대하여 반대방향으 로 이동하는 능동전달 현상으로 H⁺이온이 능동전달의 에너지를 제공하였기 때문이다.

방사선을 조사하지 않은 세포막model의 고정온 도 36.5℃에서 초기 pH 변화에 대한 전달 특성

알칼리이온(Na⁺, K⁺)에 대한 H⁺이온농도의 변화를 때의 결과는 Fig.2.- Fig.3. 에 나타내었다. 구동력이 되 는 수소이온 농도를 증가시킬수록 농도변화 및 플럭 스가 증가하였다.

이때 pH 0.5 일 때 플럭스의 최고값을 나타냈으며 이는 초기농도 99%의 이동량을 보였다. Fig. 4.에서는 우측셀의 초기 pH 변화시 최종이동결과를 초기농도의 백분율로 나타낸 것이다. 이 때 pH 3에서는 거의 이동 이 일어나지 않으며 pH 0.5 부근에서는 K⁺ 나 Na⁺ 양 쪽 모두 대부분 이동되었음을 알 수 있다.

106-

이는 수소이온농도가 K⁺, Na⁺의이동량과 유사한 경 향을 보인 것으로서 이동의 구동력이 되는 수소이온 농도가 클수록 K⁺, Na⁺의 이동이 크다는 것을 알 수 있었다.

그러나, K⁺, Na⁺가 H⁺의 이동량을 초과하지 못하므 로 그 정량적인 관계는 H⁺/K⁺≥1 또는 H⁺/Na⁺≥1로 Helfferich^[10]의 수지에 대한 결과와 일치하였다.

Fig.5.은 Fig 2, 3에서 초기플럭스를 구한 결과이다. K+ 나 Na+ 양쪽 모두 pH 0.5 일 때 각각 최대값을 나 타내었다. Table 2에 초기 pH 변화에 대한 K⁺, Na⁺의 초기플럭스 변화량을 나타내었다. 이 초기플럭스는 시 간대 농도의 그래프에서 최소 제곱법에 의해 C=at2 + bt +c 를 구한 후 b를 초기 농도 변화율로 취하여 계 산 한 것이다.

본 실험에서 H⁺ 이온은 K⁺, Na⁺ 이온과의 이온교환 에 의해서 이동함을 알았다. 그러나 K⁺, Na⁺가 H⁺의 이동량을 초과하지 못하였다. 즉, H⁺의 전달량≥K⁺, Na⁺의 전달량의 관계가 성립되며 이는 막 내부 세공의 크기가 확대되면 세공 표면에서의 이온교환에 의한 능동전달 보다 농도차에 의한 확산이 더 쉬워지기 때 문이다. H⁺이온과 K⁺, Na 이온의 비가 1 일 때 가장 좋은 효율을 나타내며 이는 이온교환에 의한 능동 전 달만 일어난다고 할 수 있다.

nU	Initial F(mole/cm2 h)	
рн	K+ Ion	Na+ Ion
0.5	7.68x10-3	7.49x10-3
1	3.96x10-3	2.98x10-3
1.5	1.72x10-3	1.15x10-3
2	6.8x10-4	4.9x10-4
3	10.6x10-4	7.9x10-4

Fig. 2. Effect o f initial pH on transport of K^+ ion

Fig. 4. Effect of initial pH on transported percentage of $K^{^+}$ and $Na^{^+}$ ion

표2. Initial pH vs. initial flux

Fig. 5. Effect of initial pH on initial flux of K^{+} and Na^{+} ion

2) 방사선 5Gy로 조사한 세포막model의 고정온 도 36.5℃에서 초기 pH변화에 대한 전달 특 성

방사선 5Gy로 조사한 세포막model에서 알칼리이온 (Na⁺, K⁺)에 대한 H⁺이온농도의 변화를 때의 결과는 Fig.6. Fig.7.에 나타내었다. 방사선 5Gy로 조사한 세포 막model에서는 방사선 조사를 안 한 세포막모델보다 구동력이 되는 수소이온 농도를 4.5배 정도 증가시키 고 농도변화 및 플럭스도 4.5배 정도 증가하였다.

이 때 pH 0.5 일 때 플럭스의 최고값을 나타냈으며 이는 초기농도 99%의 이동량을 보였다. Fig. 8.에서는 우측셀의 초기 pH 변화시 최종이동결과를 초기농도의 백분율로 나타낸 것이다. 이 때 pH 3에서는 거의 이동 이 일어나지 않으며 pH 0.5 부근에서는 K⁺ 나 Na⁺ 양 쪽 모두 대부분 이동되었음을 알 수 있다.

이는 수소이온농도가 K⁺, Na⁺의 이동량과 유사한 경향을 보인 것으로서 이동의 구동력이 되는 수소이 온 농도가 클수록 K⁺, Na⁺의 이동이 크다는 것을 알 수 있었다.

그러나, K⁺, Na⁺가 H⁺의 이동량을 초과하지 못하므 로 그 정량적인 관계는 H⁺/K⁺>1 또는 H⁺/Na⁺>1로 Helfferich의 수지에 대한 결과와 일치하였다.

Fig.9은 Fig 6, 7에서 초기플럭스를 구한 결과이다. K⁺ 나 Na⁺ 양쪽 모두 pH 0.5 일 때 각각 최대값를 나 타내었다. Table 2.에 초기 pH 변화에 대한 K⁺, Na⁺의 초기플럭스 변화량을 나타내었다. 이 초기플럭스는 시 간대 농도의 그래프에서 최소 제곱법에 의해 C=at2 + bt +c 를 구한 후 b를 초기 농도 변화율로 취하여 계 산 한 것이다.

본 실험에서 H⁺ 이온은 K⁺, Na⁺ 이온과의 이온교환 에 의해서 이동함을 알았다. 그러나 K⁺, Na⁺가 H⁺의 이동량을 초과하지 못하였다. 즉, H⁺의 전달량>K⁺, Na⁺의 전달량의 관계가 성립되며 이는 막 내부 세공의 크기가 확대되면 세공 표면에서의 이온교환에 의한 능동전달 보다 농도차에 의한 확산이 더 쉬워지기 때 문이다. H⁺이온과 K⁺, Na⁺ 이온의 비가 1 일 때 가장 좋은 효율을 나타내며 이는 이온교환에 의한 능동 전 달만 일어난다고 할 수 있다.

표 3. Initial pH vs. initial flux

	Initial F(mole/cm ² h)	
рн	K ⁺ Ion	Na ⁺ Ion
0.5 1 1.5 2 3	42.4×10^{-3} 16.7×10^{-3} 6.30×10^{-3} 37.0×10^{-4} 35.0×10^{-4}	43.3x10 ⁻³ 23.6x10 ⁻³ 13.2x10 ⁻³ 65.0x10 ⁻⁴ 52.0x10 ⁻⁴

Fig. 6. Effect of initial pH on transport of K⁺ ion by radiation

Fig.7. Effect of initial pH on transport of Na⁺ ion by radiation

Fig. 8. Effect of initial pH on transported percentage of $K^{^{+}}$ and Na+ ion by radiation

Fig. 9. Effect of initial pH on initial flux of $K^{\!+}$ and $Na^{\!+}$ ion by radiation

IV. 고찰

고분자막은 1960년대에 CA계통의 비 대칭고분자막 이 개발되었고 1970년대에는 polyamide계의 공중사막 이 1980년대에는 복합막이 개발되었으며 복합막은 기 계적 강도보존 층인 지지층과 선택적 투과성을 갖은 활성 층으로 이루어진 복합적 구조를 지닌 고분자막 이다.

복합막의 지지층은 용매투과속도를 빠르게 하는 기 능 층이며 활성 층은 용질분리를 담당하는 비 공성의 기능 층이다. 이온투과성막은 선택적반투과성막인 세 포막과 같은 특성을 지녀야 하므로 이온교환막으로 복합막 구조를 하고 있다.

Marr와 Kopp^[14]는 액막에서 일어나는 전달현상과 매카니즘을 보고하였는데 이 보고에 의하면 능동전달 을 병류수송(co- transport)과 향류수송(counter-transport) 으로 나누는데 음이온의 전달시 H⁺이온과 음이온이 동시에 이온쌍을 구성하여 전달자와 복합체를 형성하 는 병류수송(co-transport)과 양이온의 전달시 H⁺이온이 에너지를 제공하여 H⁺이온과 양이온이 각각 전달자와 복합체를 형성하여 반대방향으로 전달되는 향류수송 (counter-transport)이있다.

Yoshikawa, M^[15] 등에 의해 poly(1- propenoyl-9acridinyl-co-acrylonitrile)을 통한 할로겐 이온의 투과는 향류수송과 병류수송에 의하여 이루어지며 poly (1-vinylimida zole-co-styrene)을 통한 할로겐 이온의 투 과 또한 향류수송과 병류수송에 의해서 세포막에서 물질의 능동수송이 있음을 보고하고 있으며 또한 Koyama, K^[16]등은 poly(1-butyl-2-vinyl pyridinium chloride - co-styrene)을 역삼투 공정에 응용시커 89-95% 정도의 배제효과가 있었음을 연구보고 하였다.

본 실험은 슬폰화 폴리스티렌-디비닐벤젠(polystyr ene-divinylbenzene) 혼성 중합막으로 구성된 세포막 모 델에서 양이온 K⁺, Na⁺ 이온과의 이온교환에 의한 능 동전달 실험이므로 향류수송(counter-transport)을 알아 보는 실험이다.

방사선이 조사된 세포막모델에서는 비정상적으로 양이온 K⁺, Na⁺ 이온과의 이온교환에 의한 능동전달이 발생하여 정상적인 물질전달이 이루어지므로 실제로 세포의 기능에 커다란 영향을 미쳐서 세포사, 세포기 능과 구조적변화 등 다양한 형태의 장해를 유발하는 것으로 사료된다.

V. 결 론

방사선조사로 고분자막(세포막모델)의 구조적 변화 에 따른 Na⁺-K⁺이온투과성의 변화를 실험을 한 결과 아래와 같은 결론을 추론하게 되었다.

첫째, 방사선을 조사하지 않은 고분자 막(세포막모 델)의 Na⁺-K⁺이온농도의 변화 에 대하여 알아본 결과 로 다음과 같았다.

 Na⁺-K⁺이온의 능동전달 초기 플럭스는 pH가 증 가 할수록 증가하였다.

2. 실험범위(pH 0.5-3.0)에서 Na⁺, K⁺의 초기 플럭스 는 각각 10.6×10⁻⁴-7.68×10⁻³ mole/cm²・h 및 7.9x10⁻⁴-7.49x10⁻³ mole/cm2 ⋅ h이었다.

3. H⁺이온의 이동량과 Na⁺, K⁺이동량의 정량적인 관 계는 H⁺/K⁺≥1H⁺/Na⁺≥1, H⁺/Na⁺≥1 이었다.

둘째, 5Gy의 선량을 조사한 고분자 막의 Na⁺-K⁺ 이 온농도의 변화에 대하여 알아본 결과로 다음과 같았 다.

1. Na⁺-K⁺이온의 능동전달 초기 플럭스는 pH가 증 가 할수록 증가하였다.

 실험범위(pH0.5-3.0)에서 Na⁺, K⁺의 초기 플럭스는 각각 35.0 x 10⁻⁴- 42.4 × 10⁻³mole/cm² ⋅ h 및 52.0 x10⁻⁴-43.3 x 10⁻³mole/cm² ⋅ h이었다.

3. H⁺이온의 이동량과 Na⁺, K⁺이동량의 정량적인 관 계는 H⁺/K⁺>1H⁺/Na⁺>1 이었다.

상기의 실험 결과를 종합해 보면 방사선 5Gy의 조 사로 세포막모델(고분자막)의 구성 성분 중 H가 전리 가 되어 전해질의 H^{*}이온 함량을 증가시킨다.

전해질의 H^{*}이온 함량의 증가는 능동전달의 구동력 을 증가시켜서 조사되지 않은 고분자 막보다 4-5배정 도로 급속도로 Na⁺, K⁺의 초기 플럭스 증가를 가져왔 다.

이는 Na⁺, K⁺ 이동량의 증가를 가져와 정상적인 물

질의 농동 전달에 큰 장해를 준다. 결국에는 세포막의 기능이 정상적으로 작동을 하지 못하므로 다양한 형 태의 세포장해를 발생할 것으로 사료된다.

참고문헌

- [1] Choy, E, M., Evans, D. F and Cussier, E. L, J. Am Chem Soc, pp.7096-7085, 1994.
- [2] Schiffer, D. K., Hochhauser, A. Evans, D. F and Cussier, E. L, Nature(London), pp.250-484, 1994.
- [3] Perderson, C. J., Am Chem Soc, pp.2489-2495, 1997.
- [4] Kobuke Y., Hanjik., Horiguchi, K., Asada M., Nakayama and Furukawa, J. Am Chem Soc, pp.7198-7414, 1996.
- [5] Sasidhar, V. and Ruckenstein, E, : J. Colloid and Interface Sci, Vol. 85, No. 2, pp.332, 1992.
- [6] Adamson, A. W, "Physical chemistry of surface" John wiley and Sons, New York. 1982.
- [7] Whidby, J. F. and Morgan, W. M. J. Phys, Chem, Vol. 77, No. 25, pp.2999, 1993.
- [8] Davies, M(1979), "Function of Biological Membrane, "Chap man and Hall, London, Vol. 1079. pp.21, 1979.
- [9] Dahl, J. L. and Hokin, L. E. Ann. Rev Biochem. Vol. 43, pp.327-356. 1997.
- [10] Helfferich, F, Ion exchange, Mc Graw-Hill, New York, 1992.
- [11] Swdlack. B. and Kahovec, J, Synthetic polymeric membrane, walter de Grvyter, Berlin, New York, 1987.
- [12] Hwang, S. T. "Membrane in separation", John and Sons, Inc New York, 1982.
- [13] M. Yoshikawa, S. Shudo, K. Sanui and N. Ogata, Active tansport of organic acid rough poly Membrane Sci, pp.26, 1996.
- [14] Marr, R. and A, Kopp, " Liquid membrane technology a survey of phenomena, mechanism, and model," Inter Chem. Eng, pp.22-44, 1982.
- [15] Yoshikawa, M., Shudo, S., Sanui, K., and Ogata, N, JI. Membrane SCI, pp.26, 1986.
- [16] Koyama, K, Nippon Kagaku Kaishi, Vol. 2, pp.281, 1993