DOI QR코드

DOI QR Code

Correction Factor for the Eenergy Dependence of a Optically Stimulated Luminescent Dosimeter in Diagnostic Radiography

진단방사선촬영에서 광자극형광선량계의 에너지의존성에 대한 보정인자

  • Kim, Jong-Eon (Department of Radiological Science, Kaya University) ;
  • Im, In-Chul (Department of Radiological Science, Dongeui University) ;
  • Lee, Hyo-Yeong (Department of Nuclear Medicine, Pusan National University Hospital)
  • 김종언 (가야대학교 방사선학과) ;
  • 임인철 (동의대학교 방사선학과) ;
  • 이효영 (부산대학교병원 핵의학과)
  • Received : 2011.08.01
  • Accepted : 2011.10.20
  • Published : 2011.10.31

Abstract

The purpose of this study is to calculate correction factors for energy dependence of a nanoDotdosimeter to measure patient's skin dose in diagnostic radiography. The correction factors were calculated by using the values of mean energy for the RQR standard radiation qualities of IEC publicated by Rosado et al. and the energy response graph of dosimeter relative X-ray on phantom calibration provided by landaur corporation. Results showed the correction factors of 1-1.33 over the tube voltage range of 40-50 kVp. Acquired correction factors are considered to be useful in the clinics for the measurement of accurate skin dose at each tube voltage.

이 연구의 목적은 진단방사선촬영에서 환자의 피부선량을 측정하는 나노도트선량계의 에너지의존성에 대한 보정인자들을 구하는 것이다. 보정인자들은 랜다우어사에서 제공한 팬텀 정에 관한 X-선에 상대적인 선량계의 에너지반응그래프와 로사도 등이 발표한 IEC의 RQR 표준방사선 품질들에 대한 평균에너지 값들을 사용하여 구하였다. 결과들은 관전압 40-150 kVp에서 1-1.33의 보정인자들을 나타냈다. 얻어진 보정인자들은 각 관전압에서 정확한 피부선량 측정을 위하여 임상에 사용하는데 유용할 것으로 생각된다.

Keywords

References

  1. microStar user manual, Landauer Inc., 2009.
  2. R. Hanify and M. Salasky, "Single point detector(dot) type testing summary report", Landaur Inc, pp.1-11, 2006.
  3. microstar reader, Landauer Inc..
  4. P. Engel-Hills, "Radiation protection in medical imaging", Radiography, Vol. 12, pp.153-160, 2006. https://doi.org/10.1016/j.radi.2005.04.008
  5. I.O. Olarinoye and I. Sharifat, "A protocol for setting dose reference level for medical radiography in nigeria: a review", Bajopas, Vol. 3, No. 1, pp.138-141, 2010.
  6. N. Kucuk, A. Koliç, G. Kemikler, L. Ozkan and K. Engin, "Analyses of surface dose from high energy photon beams for different clinical setup parameters", Turk J Med Sci, Vol. 32, pp.211-215, 2002.
  7. S. Devic, J. Seuntjens, W. Abdel-Rahman, M. Evans, M. Olivares and E.B. Podgorsak, "Accurate skin dose measurements using radiochromic film in clinical applications", Med. Phys., Vol. 33, No. 4, pp.1116-1124, 2006. https://doi.org/10.1118/1.2179169
  8. C.S. Reft, "The energy dependence and dose response of a commercial optically stimulated luminescent detector for kilovotage photon, megavoltage photon, and electron, proton, and carbon beams", Med. Phys., Vol. 36, No. 5, pp.1690-1699, 2009. https://doi.org/10.1118/1.3097283
  9. P.H.G. Rosado, M.S. Nogueira, P.L. Squair and P.M.C. Oliveira, "Determination of the mean energy for attenuated and unattenuated IEC diagnostic X-ray beams", Inetrnational Nuclear Atlantic Conference, Santos, 2007.
  10. P.H.G. Rosado, M.S. Nogueira, F. genezini and E.C. Vilela, "Measurement of conversion coefficients between free in air kerma and personal dose equivalent for diagnostic X-ray beams", Radiation Measurements, Vol. 43, pp.968-971, 2008. https://doi.org/10.1016/j.radmeas.2007.11.082
  11. International Eelectrotechnical Commission, IEC 31267: Medical diagnostic X-ray equipment-Radiation conditions for use in the determination of characteristics, Geneva, pp.25-31, 2005.
  12. 방사선량의 표준측정법, 한국의학물리학회, pp.28-29, 1990.

Cited by

  1. Determination of the Equivalent Energy of a 6 MV X-ray Beam vol.10, pp.8, 2016, https://doi.org/10.7742/jksr.2016.10.8.591
  2. Measurement of Dose outside a 6 MV Field Edge Using Optically Stimulated Luminescent Nano Dot Dosimeters vol.8, pp.7, 2014, https://doi.org/10.7742/jksr.2014.8.7.449
  3. Determination of the Effective Energy of X-Ray Beam Using Optically Stimulated Luminescent nanoDot Dosimeters vol.9, pp.6, 2015, https://doi.org/10.7742/jksr.2015.9.6.375