DOI QR코드

DOI QR Code

Pancreatic Lipase Inhibitory and Antioxidant Activities of Zingiber officinale Extracts

생강 추출물의 pancreatic lipase 저해 및 항산화 활성

  • Bae, Jong-Sup (College of Pharmacy, Kyungpook National University) ;
  • Kim, Tae-Hoon (Department of Herbal Medicinal Pharmacology, Daegu Haany University)
  • Received : 2010.12.06
  • Accepted : 2011.04.15
  • Published : 2011.06.30

Abstract

Ginger (Zingiber officinale) is a well-known herb that is widely consumed as spice for the flavoring of foods. As part of our continuing search for bioactive materials, the in vitro pancreatic lipase inhibition and antioxidant properties of an aqueous ethanolic extract of Z. officinale were investigated. The total phenolic content was determined using a spectrophotometric method. The antioxidant efficacies of the extract was studied with radical scavenging assays using DPPH and $ABTS^+$ radicals. Further more, the antiobesity effect of the extract was evaluated by porcine pancreatic lipase assay. In particularly, the pancreatic lipase inhibitory activity of the ethyl acetate (EtOAc)-soluble portion from Z. officinale was significantly higher than that of the other solvent-soluble portions. The results suggest that Z. officinale may have therapeutic potential that may be useful in development of an anti-obesity agent or its precursors.

신선한 생강을 80% EtOH로 침지 추출하여 얻어진 추출물을 $CHCl_3$, EtOAc, n-BuOH로 순차 용매 분획하였고, pancreatic lipase 저해활성, DPPH 및 $ABTS^+$ radical 소거능을 평가하였다. Pancreatic lipase 저해활성을 측정한 결과, EtOAc층의 15.6 ${\mu}g$/mL의 실험 농도에서 에서 대조군인 orlistat보다 강한 $98.0{\pm}0.7%$ 저해능을 확인하였으며, 생강의 주성분으로 잘 알려져 있는 6-gingerol의 경우 같은 농도에서 $16.2{\pm}0.5%$의 상대적으로 낮은 저해능을 나타내었다. DPPH 라칼 소거능은 페놀성 화합물의 함량이 상대적으로 높은 EtOAc층의 125 ${\mu}g$/mL의 농도에서 $56.5{\pm}1.4%$, 62.5 ${\mu}g$/mL의 농도에서 $40.5{\pm}1.2%$의 라디칼 소거능을 확인하였고, 이는 생강의 항산화 활성은 생강 추출물에 존재하는 6-gingerol 등과 같은 페놀성 화합물이 관여함을 시사하였다. 또한 총페놀성 함량이 g당 $82.0{\pm}0.3$ mg으로 나타난 $CHCl_3$층에 대해서도 $ABTS^+$ 라디칼 소거 활성물질의 존재가 시사되었으며, pancreatic lipase, DPPH 및 $ABTS^+$ 라디칼 소거활성물질의 동정을 진행 중에 있으며, 향후 이들 활성물질의 활성 기작에 대한 연구가 필요하다고 사료된다. 또한 본 연구결과는 보다 우수한 pancreatic lipase 저해능을 가지는 새로운 선도화합물 발굴을 위한 기초자료로 이용될 수 있을 뿐만 아니라 국내에 자생하는 생강의 식물 화학적 성분에 대한 기초자료로 이용될 수 있을 것으로 사료된다.

Keywords

References

  1. Bray GA, Popkin BM (1998) Dietary fat intake dose affect obesity. Am J Clin Nutr, 68, 1157-1173 https://doi.org/10.1093/ajcn/68.6.1157
  2. Bray GA, Popkin BM (1999) Dietary fat affects obesity rate. Am J Clin Nutr, 70, 572-573 https://doi.org/10.1093/ajcn/70.4.572
  3. Freedman DS, Serdula MK, Perey CA, Whitle L (1997) Obesity levels of lipids and glucose, and smoking among Navajo adolescents. J Nutr, 127, 2120-2127 https://doi.org/10.1093/jn/127.10.2120S
  4. Rexrode KM, Manson JE, Hennekens CH (1996) Obesity and cardiovascular disease. Curr Opin Cardiol, 11, 490-495 https://doi.org/10.1097/00001573-199609000-00007
  5. Bitou N, Nimomiya M. Tsjita T, Okuda H (1999) Screening of lipase inhibitors from marine algae. Lipids, 34, 441-445 https://doi.org/10.1007/s11745-999-0383-7
  6. Drent ML, Larsson I, William-Olsson T, Quaade F, Czubayko F, Von Bergmann K, Strobel W, Sjotro L, Van der Veen EA (1995) Orlistat (RO 18-0647), a lipase inhibitor, in the treatment of human obesity: a multiple dose study. Int J Obesity, 19, 221-226
  7. Hadvay P, Lengsfeld H, Wolter H (1988) Inhibition of pancreatic lipase in vitro by covalent inhibitor tetrahydrolipstatin. Biochem J, 256, 357-361 https://doi.org/10.1042/bj2560357
  8. Peter C, Williams G (2001) Drug treatment of obesity: from past failures to future successes?. Br J Clin Pharmacol, 51, 13-25
  9. Yamamoto M, Shimura Y, Iyoh M Egawa, S Ionue (2000) Anti-obesity effects of lipase inhibitor CT-II, an extract from edible herbs, Nomame Herba, on rats fed a high-fat diet. Int J Obesity, 24, 758-764 https://doi.org/10.1038/sj.ijo.0801222
  10. Birari RB, Bhutani KK (2007) Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov Today, 12, 879-889 https://doi.org/10.1016/j.drudis.2007.07.024
  11. Lee EM, Lee SS, Chung BY, Cho JY, Lee IC, Ahn SR, Jang SJ, Kim TH (2010) Pancreatic lipase inhibition by C-glucosidic flavones isolated from Eremochloa ophiuroides. Molecules, 15, 8251-8259 https://doi.org/10.3390/molecules15118251
  12. Hong JY, Shin SR, Bae MJ, Bae JS, Lee IC, Kwon OJ, Jung JW, Kim YH, Kim TH (2010) Pancreatic lipase inhibitors isolated from the leaves of cultivated mountain ginseng (Panax ginseng). Korean J Food Preserv, 17, 727-732
  13. Kim TH, Kim JK, Ito H, Jo C (2011) Enhancement of pancreatic lipase inhibitory activity of curcumin by radiolytic transformation. Bioorg Med Chem Lett. 21, 1512-1514 https://doi.org/10.1016/j.bmcl.2010.12.122
  14. Shim JS, Kim SD, Kim TS, Kim KN (2005) Biological activities of flavonoid glycosides isolated from Angelica keiskei. Korean J Food Sci Technol, 37, 78-83
  15. Branen AL (1975) Toxicology and biochemistry of butylated hydroxy anisole and bytylated hydoxytoluane. J Oil Chem Soc, 52, 59-62 https://doi.org/10.1007/BF02901825
  16. Masaki H, Sakaki S, Atsumi T, Sakurai H (1995) Active-oxygen scavenging activity of plants extracts. Biol Pharm Bull, 18, 162-166 https://doi.org/10.1248/bpb.18.162
  17. Huang CN, Horng JS, Yin MC (2004) Antioxidative and antiglycative effects of six organosulfur compounds in low-density lipoprotein and plasma. J Agric Food Chem, 52, 3674-3678 https://doi.org/10.1021/jf0307292
  18. Young HY, Luo YL, Cheng HY, Hsieh W.C, Liao JC, Peng WH. (2005) Analgesic and anti-inflammatory activities of [6]-gingerol. J Ethnopharmacol, 96, 207-210 https://doi.org/10.1016/j.jep.2004.09.009
  19. Katiyar SK, Agarwal R, Mukhtar H (1996) Inhibition of tumor promotion in SENCAR mouse skin by ethanol extract of Zingiber officinale rhizome. Cancer Res, 56, 1023-1030
  20. Shanmugam KR, Ramakrishna CH, Mallikarjuna K, Sathyavelu R (2010) Protective effect of ginger in alcohol-induced renal damage and antioxidant enzymes in male albino rats. Ind. J Exp Biol, 4, 143-149
  21. Gao X, Bjor, L, Trajkovski V, Uggla M (2000) Evaluation of antioxidant activities of rosehip ethanol extracts in different test system. J Sci Food Agri, 80, 2021-2027 https://doi.org/10.1002/1097-0010(200011)80:14<2021::AID-JSFA745>3.0.CO;2-2
  22. Kim JH, Kim HJ, Park HW, Youn SH, Choi DY, Shin CS (2007) Development of inhibitors against lipase and alpha-glucosidase from derivatives of monascus pigment. FEMS Microbiol Lett, 276, 93-98 https://doi.org/10.1111/j.1574-6968.2007.00917.x
  23. Blois MS (1958) Antioxidant activity determination by the use of a stable free radical. Nature, 181, 1199-1200 https://doi.org/10.1038/1811199a0
  24. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying and improved ABTS radical cation decolorization assay. Free Radic Biol Med, 26, 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  25. Rababah TM, Hettiarachchy NS, Horax R (2004) Total phenolics and antioxidant activities of fenugreek, green tea, black tea, grape seed, ginger, rosemary, gotu kola, and ginkgo extracts, vitamin E, and tert- butylhydroquinone. J Agric Food Chem, 52, 5183-5186 https://doi.org/10.1021/jf049645z
  26. Tao QF, Xu Y, Lam RYY, Schneider B, Dou H, Leung PS, Shi SY, Zhou CX, Yang LX, Zhang RP, Xiao YC, Stockigt J, Zeng S, Cheng CHK, Zhao Y (2008) Diarylheptanoids and a monoterpenoid from the rhizomes of Zingiber officinale: Antioxidant and cytoprotective properties. J Nat Prod, 71, 12-17 https://doi.org/10.1021/np070114p
  27. Cooke D, Bloom S (2006) The obesity pipeline: current strategies in the development of anti-obesity drugs. Nat Rev Drug Discov, 5, 919-1200 https://doi.org/10.1038/nrd2136
  28. Birari RB, Bhutani KK (2007) Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov Today, 12, 879-889 https://doi.org/10.1016/j.drudis.2007.07.024
  29. Kim HY, Kang MH (2005) Screening of Korean medicinal plants for lipase inhibitory activity. Phytother Res, 19, 359-361 https://doi.org/10.1002/ptr.1592
  30. Sugiyama H, Akazome Y, Shoji T, Yamaguchi A, Yasue M, Kanda T, Ohtake Y (2007) Oligomeric procyanidins in apple polyphenol are main active components for inhibition of pancreatic lipase and triglyceride absorption. J Agric Food Chem, 55, 4604-4609 https://doi.org/10.1021/jf070569k
  31. Liu W, Zheng Y, Han L, Wang H, Saito M, Ling M, Kimura Y, Feng Y (2008) Saponins (Ginsenosides) from stems and leaves of Panax quinquefolium prevented high-fat diet induced obesity in mice. Phytomedicine, 15, 1140-1145 https://doi.org/10.1016/j.phymed.2008.07.002
  32. Ma J, Jin X, Yang Li, Liu Z (2004) Diarylheptanoids from the rhizomes of Zingiber officinale. Phytochemistry, 65, 1137-1143 https://doi.org/10.1016/j.phytochem.2004.03.007
  33. Torel J, Gillard J, Gillard P (1986) Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochemistry, 25, 383-385 https://doi.org/10.1016/S0031-9422(00)85485-0
  34. Wang SY, Chang HN, Lin KT, Lo CP, Yang NS, Shyur LF (2003) Antioxidant properties and phytochemical characteristics of extracts from Lactuca indica. J Agric Food Chem, 26, 1506-1512
  35. Dugasania S, Pichikac MR, Nadarajahc VD, Balijepalli MK, Tandra S, Korlakunta JN (2010) Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J Ethnopharmacology, 127, 515-520 https://doi.org/10.1016/j.jep.2009.10.004

Cited by

  1. Effect of Zingiber officinale Roscoe Extract on Antioxidant and Apoptosis in A2058 Human Melanoma Cells vol.26, pp.3, 2016, https://doi.org/10.17495/easdl.2016.6.26.3.207
  2. Effects of Korean Zingiber mioga R. (Flower Buds and Rhizome) Extract on Memory vol.43, pp.10, 2014, https://doi.org/10.3746/jkfn.2014.43.10.1519
  3. Physiological Activities of Ethanol Extracts from Different Parts of Allium hookeri vol.28, pp.2, 2015, https://doi.org/10.9799/ksfan.2015.28.2.295
  4. Antioxidant and Antimicrobial Activities of Ethanol Extract from Six Vegetables Containing Different Sulfur Compounds vol.41, pp.5, 2012, https://doi.org/10.3746/jkfn.2012.41.5.577
  5. A study of the lipoprotein lipase inhibitory mechanism ofPoncirus trifoliatawater extracts vol.48, pp.1, 2015, https://doi.org/10.4163/jnh.2015.48.1.9
  6. Anti-Oxidative and Anti-Diabetic Effects of Butanol Faction from Yangha (Zingiber mioga ROSC) vol.34, pp.1, 2018, https://doi.org/10.9724/kfcs.2018.34.1.105
  7. 된장과 청국장 첨가가 강력분의 물성 변화에 미치는 영향 vol.25, pp.3, 2011, https://doi.org/10.17495/easdl.2015.6.25.3.440
  8. 국내외 시판 농산물 중간소재의 총페놀, 총플라보노이드, 총안토시아닌 함량 및 항산화 활성 vol.44, pp.3, 2016, https://doi.org/10.4014/mbl.1606.06003
  9. 양하를 첨가한 김치의 품질특성에 관한 연구 vol.18, pp.3, 2017, https://doi.org/10.5762/kais.2017.18.3.400
  10. 긴병꽃풀의 생리활성과 이를 첨가한 양갱의 품질특성 vol.24, pp.2, 2011, https://doi.org/10.11002/kjfp.2017.24.2.206
  11. 역류성 식도염에 대한 반하(半夏), 생강(生薑), 소반하탕(小半夏湯)의 효과 비교 vol.40, pp.2, 2019, https://doi.org/10.13048/jkm.19014
  12. Determination of Economic Thresholds for Rhizome Diseases of Ginger (Zingiber officinale) vol.23, pp.4, 2019, https://doi.org/10.7585/kjps.2019.23.4.251
  13. Quality Characteristics and Optimization of Ginger Pear Jam Prepared with Sugar, Pectin, and Citric Acid, Using the Response Surface Methodology vol.31, pp.1, 2011, https://doi.org/10.17495/easdl.2021.2.31.1.26
  14. 추출 용매를 달리한 생강 추출물에 대한 생리활성의 비교 평가 연구 vol.36, pp.2, 2021, https://doi.org/10.6116/kjh.2021.36.2.19.