DOI QR코드

DOI QR Code

Development of Fretting Fatigue Parameter

접촉피로 파라미터의 개발

  • Lee, Hyuk-Jae (Materials Research Center for Energy and Green Technology, Andong National University)
  • 이혁재 (안동대학교 청정에너지소재기술연구센터)
  • Received : 2010.10.08
  • Accepted : 2011.01.13
  • Published : 2011.02.05

Abstract

In this study, new multi-axial, critical plane based, fretting fatigue crack initiation parameter is developed by the addition of a new term into the Modified Shear Stress Range(MSSR) parameter. The newly developed parameter (MSSR') is then used to evaluate fretting fatigue life of titanium alloy, Ti-6A1-4V with various contact conditions. Finite element analysis is also used in order to obtain stress distribution on the contact surface during fretting fatigue test, which is then used for the calculation of fretting fatigue parameter. The MSSR' parameter shows better performance in predicting fretting fatigue lives from the conventional fatigue data, and less scattering within fretting fatigue data with different contact geometries.

Keywords

References

  1. Waterhouse, R. B., Fretting Fatigue, Applied Science Publishers, London, 1981.
  2. Hoeppner, D., Goss, G., "A Fretting-Fatigue Damage Threshold Concept", Wear, Vol. 27, pp. 61-70, 1974. https://doi.org/10.1016/0043-1648(74)90084-2
  3. Waterhouse, R. B., "Fretting Fatigue", Int. Mater. Rev., Vol. 37, 77-92, 1992. https://doi.org/10.1179/imr.1992.37.1.77
  4. Cowles, A. B., "High Cycle Fatigue in Aircraft Gas Turbines - An Industry Perspective", Int. J Fatigue, Vol. 20, pp. 147-163, 1999.
  5. Nicholas, T., "Critical issues in high cycle fatigue", Int. J Fatigue, Vol. 21, pp. S221-231, 1999. https://doi.org/10.1016/S0142-1123(99)00074-2
  6. Bannatine, J. A., Comer, J. J., Handrock, J. L., Fundamentals of Metal Fatigue Analysis, Prentice Hall, NJ, 1990.
  7. Krupp, U., Fatigue Crack Propagation in Metals and Alloys, Wiley-VCH, Weinheim, 2007.
  8. Krgo, A., Kallmeyer, A. R., Kurath, P., "Evaluation of HCF Multiaxial Fatigue Life Prediction Methodlogies for Ti-6Al-4V", In Preceedings of the 5th National Turbine Engines High Cycle Fatigue Conference, Arizona, 2000.
  9. Shigley, J. E., Mischke, C. R., Mechanical Engineering Design, McGraw-Hill, NY, 1989.
  10. Szolwinski, M., Farris, T., "Mechanics of Fretting Fatigue Crack Formation", Wear, Vol. 198, pp. 93 -107, 1996. https://doi.org/10.1016/0043-1648(96)06937-2
  11. Smith, K., Watson, P., Topper, T., "A Stress-Strain Function for the Fatigue of Metals", J. Mater. JMLSA, Vol. 5, pp. 767-778, 1970.
  12. Fatemi, A., Socie, D., "A Critical Plane Approach to Multiaxial Fatigue Damage Including Out of Phase Loading", Fatigue Fract. Engr. Mater. Struct., Vol. 11, pp. 149-165, 1988. https://doi.org/10.1111/j.1460-2695.1988.tb01169.x
  13. Findley, W. N., "Fatigue of Metals Under Combination of Stresses", Trans. ASME, Vol. 79, pp. 1337-1352, 1975.
  14. Lykins, C. D., Mall, S., Jain, V. K., "A Shear Stress Based Parameter for Fretting Fatigue Crack Initiation", Fatigue Fract. Engr. Mater. Struct., Vol. 24, pp. 461-473, 2001. https://doi.org/10.1046/j.1460-2695.2001.00412.x
  15. Namjoshi, S., Mall, S., Jain, V. K., Jin, O., "Fretting Fatigue Crack Initiation Mechanism in Ti-6Al-4V", Fatigue Fract. Engr. Mater. Struct., Vol. 25, pp. 955-964, 2002. https://doi.org/10.1046/j.1460-2695.2002.00549.x
  16. Walker, K., "The Effective Stress Ratio during Crack Propagation and Fatigue for 2024-T3 and 7075-T6 Aluminum", Effects on Environment and Complex Load History on Fatigue Life, Philadelphia, pp. 1-14, 1970.