DOI QR코드

DOI QR Code

Non-Quadratic Anisotropic Strain Rate Potential Defined in Plane Stress State

평면 응력 조건에서 정의된 비이차 비등방 변형률 속도 포텐셜

  • 김대용 (한국기계연구원 부설 재료연구소 변형제어연구그룹) ;
  • 김지훈 (한국기계연구원 부설 재료연구소 변형제어연구그룹) ;
  • 이영선 (한국기계연구원 부설 재료연구소 변형제어연구그룹) ;
  • ;
  • 정관수 (서울대학교 재료공학부)
  • Received : 2011.06.13
  • Accepted : 2011.07.19
  • Published : 2011.08.01

Abstract

A non-quadratic anisotropic strain rate potential was introduced as a conjugate potential of the yield stress potential Yld2000-2d to describe anisotropic behavior of sheet metals, in particular, aluminum alloy sheets under plane stress state. This strain-rate potential takes into account the anisotropic yield stresses and R-values measured along the directions measured at 0, 45 and 90 degrees from the rolling direction, as well as the balanced biaxial yield stress and strain-rate ratio. The convexity of the strain-rate potential was completely proven. The strain-rate potential was applied for two anisotropic aluminum alloy sheets, AA6022-T4 and AA2090-T3. The results verified that the strain rate potential properly described the anisotropic behavior of aluminum alloy sheets and was closely conjugate of Yld2000-2d under the plane stress state.

본 연구를 통하여 비이차 비등방 항복 응력 포텐셜들의 근접 짝되는 변형률 속도 포텐셜들에 대해서 정리하고 Yld2000-2d의 근접 짝되는 Srp2003-2d에 대해서 상세 설명하였다. 제안된 비이차 비등방 변형률 속도 포텐셜 Srp2003-2d 식 형태가 소개 되었고, 볼록성이 증명되었다. 아울러 이방성 상수를 구하는 방법이 제시되었다. Srp2003-2d의 소성 거동을 살펴보기 위하여 자동차 용 알루미늄 합금 판재 AA6022-T4와 항공재료용 알루미늄 합금 AA2090-T3에 응용되었다. Srp2003-2d는 항복 응력 포텐셜 Yld2000-2d와 거의 흡사한 짝됨을 보여 주었으며, 알루미늄 판재의 비등방성을 적절히 묘사하였다. Srp2003-2d는 알루미늄 판재의 성형 공정의 모사를 위하여 이상 공정 이론을 비롯한 강소성체 재료에 대한 정식화에 적절히 응용될 수 있을 것이다.

Keywords

References

  1. R. Hill, 1948, A theory of the yielding and plastic flow of anisotropic metals, Proc. R. Soc. Lond., Vol. A193, p. 281.
  2. F. Barlat, D. Banabic, O. Cazacu, 2002, Anisotropy in sheet metals, Keynote Lecture, NUMISHEET 2002, October 21-25, Jeju island, Korea.
  3. F. Barlat, D. Lege, J. C. Brem, 1991, A six-component yield function for anisotropic materials, Int. J. Plasticity, Vol. 7, pp. 693-712. https://doi.org/10.1016/0749-6419(91)90052-Z
  4. F. Barlat, Y. Maeda, K. Chung, M. Yanagawa, J. C. Brem, Y. Hayashida, D. J. Lege, K. Matsui, S. J. Murtha, S. Hattori, R. C. Becker, S. Makosey, 1997, Yield function development for aluminum alloy sheets, J. Mech. Phys. Solids, Vol. 45, pp. 1727-1763. https://doi.org/10.1016/S0022-5096(97)00034-3
  5. F. Barlat, J. C. Brem, J. W. Yoon, K. Chung, R. E. Dick, S. -H. Choi, F. Pourboghrat, E. Chu, D. J. Lege, 2003. Plane stress yield function for aluminum alloy sheets, Int. J. Plasticity, Vol. 19, pp. 1297-1319. https://doi.org/10.1016/S0749-6419(02)00019-0
  6. F. Barlat, H. Aretz, J.W. Yoon, M.E. Karabin, J.C. Brem, R.E. Dick, 2005, Linear transformation-based anisotropic yield functions, Int. J. Plasticity, Vol. 21, pp. 1009-1039. https://doi.org/10.1016/j.ijplas.2004.06.004
  7. J. W. Yoon, F. Barlat, R. E. Dick, M. E. Karabin, 2006, Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function, Vol. 22, Int. J. Plasticity, pp. 174-193.
  8. H. Ziegler, 1977, An introduction of thermodynamics, pp. 287-290, North-Holand, Amsterdam, The Netherlands.
  9. R. Hill, 1987, Constitutive dual potentials in classical plasticity, J. Mech. Phys. Solids, Vol. 35, p. 23. https://doi.org/10.1016/0022-5096(87)90025-1
  10. N. M. Wang, 1984, A rigid-plastic rate-sensitive finite element method for modeling sheet metal forming processes, in, Pittman, F.T. et al. (ed.), Numerical Analysis of Forming Processes, pp. 117-164, John Wiley & Sons, New York.
  11. K. Chung, S. Y. Lee, F. Barlat, Y. T. Keum, J. M. Park, 1996, Finite element simulation of sheet forming based on a planar anisotropic strain-rate potential, Int. J. Plasticity, Vol. 12, pp. 93-115. https://doi.org/10.1016/S0749-6419(95)00046-1
  12. K. Chung, O. Richmond, 1992, Ideal forming, Part I: Homogeneous deformation with minimum plastic work, Int. J. Mech. Sci. Vol. 34, No. 7, pp. 575-591. https://doi.org/10.1016/0020-7403(92)90032-C
  13. K. Chung, O. Richmond, 1994, Mechanics of ideal forming, J. Appl. Mech., ASME, Vol. 61, p. 176.
  14. K. Chung, F. Barlat, J. C. Brem, D. J Lege, O. Richmond, 1997, Blank shape design for a planar anisotropic sheet based on ideal forming design theory and FEM analysis, Int. J. Mech. Sci. Vol. 39, No. 1, pp. 105-120. https://doi.org/10.1016/0020-7403(96)00007-0
  15. R. Hill, 1979, Theoretical plasticity of textured aggregates, Math. Proc. Camb. Phil. Soc., Vol. 85, p. 179. https://doi.org/10.1017/S0305004100055596
  16. F. Barlat, K. Chung, 1993, Anisotropic potentials for plastically deformation metals, Modelling Simul. Mater. Sci. Engng., Vol. 1, pp. 403-416.
  17. K. Chung, F. Barlat, O. Richmond, J. W. Yoon, 1999, Blank design for a sheet forming application using the anisotropic strain-rate potential Srp98, The integration of Material, Process and Product Design, Zabaras et al. (Eds.), Balkema, Rotterdam. pp. 213-219.
  18. D. Kim, K. Chung, F. Barlat, J. R. Youn, T. J. Kang, 2003, Non-quadratic plane-stress anisotropic strain-rate potential, In: Proceedings of the Sixth International Symposium on Microstructures and Mechanical Properties of New Engineering Materisla (IMMM2003), Wuhan, China, Octber 26 to November 1, pp. 46-51.
  19. D. Kim, F. Barlat, S. Bouvier, M. Rabahallah, T. Balan, K. Chung, 2007, Non-quadratic anisotropic potentials based on linear transformation of plastic strain rate, Int. J. Plasticity, Vol. 23, pp. 1380-1399. https://doi.org/10.1016/j.ijplas.2007.01.006
  20. R. W. Logan, W. F. Hosford, 1980, Upper-bound anisotropic yield locus calculations assuming <111> pencil glide, Int. J. Mech. Sci., Vol. 22. pp. 419-430. https://doi.org/10.1016/0020-7403(80)90011-9
  21. R. T. Rockafellar, 1970, Convex Analysis, Princeton University Press, Princeton, NY.