DOI QR코드

DOI QR Code

Inhibition of Foodborne Pathogens on Polystyrene, Sausage Casings, and Smoked Salmon Using Nonthermal Plasma Treatments

비열 플라즈마 처리를 이용한 polystyrene, 소시지 케이싱, 그리고 훈제연어에서의 식중독균 저해

  • Lee, Hahn-Bit (Department of Food Science and Technology, Seoul Women's University) ;
  • Noh, Young-Eun (Department of Food Science and Technology, Seoul Women's University) ;
  • Yang, Hee-Jae (Department of Food Science and Technology, Seoul Women's University) ;
  • Min, Sea-Cheol (Department of Food Science and Technology, Seoul Women's University)
  • 이한빛 (서울여자대학교 식품공학과) ;
  • 노영은 (서울여자대학교 식품공학과) ;
  • 양희재 (서울여자대학교 식품공학과) ;
  • 민세철 (서울여자대학교 식품공학과)
  • Received : 2011.04.27
  • Accepted : 2011.06.21
  • Published : 2011.08.31

Abstract

The effects of nonthermal plasma treatments against Salmonella Typhimurium, Escherichia coli O157:H7, and Listeria monocytogenes living on polystyrene (PS), sausage casings, and smoked salmon were investigated. Inoculated PS, casings, and salmon were treated with nonthermal plasma generated with helium (5 L/min) or with both helium (5 L/min) and oxygen (100 mL/min) at 60 Hz and 30 kV/cm for 2, 5, or 10 min. S. Typhimurium exhibited the highest sensitivity to the helium-used treatment. The greatest reduction (3.9${\pm}$0.8 log$CFU/cm^2$) was observed with L. monocytogenes on PS after the treatment with the mixed gas for 5 min. The treatment with the mixed gas inhibited L. monocytogenes on casings and salmon by 0.5${\pm}$0.3 log$CFU/cm^2$ and 1.0${\pm}$0.3 log CFU/g, respectively. Different treatment times did not result in different reductions of L. monocytogenes on both casings and salmon. The types of treatment gas and material of contamination need to be considered for evaluating the antimicrobial effects of nonthermal plasma treatments.

PS 필름에 접종된 S. Typhimurium, E. coli O157:H7, L. monocytogenes를 저해시킬 때 헬륨을 사용한 플라즈마 처리의 경우에는 S. Typhimurium이, 헬륨과 산소를 동시에 사용한 플라즈마 처리의 경우에는 L. monocytogenes가 가장 많이 저해되었다. E. coli O157:H7과 L. monocytogenes는 헬륨과 산소를 함께 사용하여 플라즈마 처리하였을 때 헬륨만 사용하였을 때보다 더 큰 저해를 보였다. 헬륨과 산소를 함께 사용한 비열 플라즈마 처리는 L. monocytogenes가 소시지 케이싱이나 훈제연어에 감염되었을 때보다 PS 필름에 감염되었을 때 L. monocytogenes를 더 효과적으로 저해시켜 감염된 재료에 따라 다른 저해 효과를 보여 주었다. 비열 플라즈마 처리에 사용된 가스의 종류와 미생물이 감염된 재료는 그 처리의 항균 효과에 대한 평가에서 중요하게 고려되어야 할 것이다. 헬륨과 산소를 사용한 비열 플라즈마 처리는 공정 후 포장재에 감염된 L. monocytogenes를 효과적으로 저해할 수 있을 것으로 기대된다.

Keywords

References

  1. Luksiene Z, Buchovec I, Paskeviciute E. Inactivation of several strains of Listeria monocytogenes attached to the surface of packaging material by Na-chlorophyllin-based photosensitization. J. Photoch. Photobio. B 101: 326-331 (2010) https://doi.org/10.1016/j.jphotobiol.2010.08.002
  2. Yun H, Kim B, Jung S, Kruk ZA, Kim DB, Choe W, Jo C. Inactivation of Listeria monocytogenes inoculated on disposable plastic try, aluminum foil, and paper cup by atmospheric pressure plasma. Food Control 21: 1182-1186 (2010) https://doi.org/10.1016/j.foodcont.2010.02.002
  3. Min S, Evrendilek GA, Zhang HQ. Pulsed electric fields: processing system, microbial and enzyme inactivation, and shelf life extension of foods. IEEE T. Plasma Sci. 35: 59-73 (2007) https://doi.org/10.1109/TPS.2006.889290
  4. Paskenviciute E, Buchovec I, Luksicen Z. High-power pulsed light for decontamination of chicken from food pathogens: A study on organoleptic properties. J. Food Safety 31: 61-68 (2011) https://doi.org/10.1111/j.1745-4565.2010.00267.x
  5. Grecz N, Rowley DB, Matsuyama A. The action of radiation on bacteria and viruses. pp. 167-218. In: Preservation of Foods by Ionizing Radiation. 2nd ed. Josephson ES, Peterson MS (eds). CRC Press, Boca Raton, FL, USA (1983)
  6. Knorr D. Hydrostatic pressure treatment of food: microbiology. pp. 159-175. In: New Methods of Food Preservation. Gould GW (ed). Blackie Academic & Professional, London, UK (1995)
  7. Zhang Q, Barbosa-Canovas GV, Swanson BG. Engineering aspects of pulsed electric field pasteurization. J. Food Eng. 25: 261-281 (1995) https://doi.org/10.1016/0260-8774(94)00030-D
  8. Shama G. Process challenges in applying low doses of ultraviolet light to fresh produce for eliciting beneficial hormetic responses. Postharvest Biol. Tec 44: 1-8 (2007) https://doi.org/10.1016/j.postharvbio.2006.11.004
  9. Laroussi M. Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Process. Polym. 2: 391-400 (2005) https://doi.org/10.1002/ppap.200400078
  10. Ragni N, Berardinelli A, Vannini L, Montanari C, Sirri F, Guerzoni ME, Guarnieri A. Non-thermal atmospheric gas plasma device for surface decontamination of shell eggs. J. Food Eng. 100: 125-132 (2010) https://doi.org/10.1016/j.jfoodeng.2010.03.036
  11. Gilliland SE, Speck ML. Mechanism of the bactericidal action produced by eletrohydraulic shock. Appl. Environ. Microb. 15: 1038-1044 (1967)
  12. Gweon BM, Kim DM, Moon SY, Choe W. Escherichia coli deactivation study controlling the atmospheric pressure plasma discharge conditions. Curr. Appl. Phys. 9: 625-628 (2009) https://doi.org/10.1016/j.cap.2008.06.001
  13. Mok CK, Song DM. Low-pressure plasma inactivation of Escherichia coli. Food Eng. Progress 14: 202-207 (2010)
  14. Deng S, Ruan R, Mok CK, Huang G, Lin X, Chen P. Inactivation of Escherichia coli on almonds using nonthermal plasma. J. Food Sci. 72: M62-M66 (2007) https://doi.org/10.1111/j.1750-3841.2007.00275.x
  15. Boucher RM. State of the art in gas plasma sterilization. Med. Device Diagn. Ind. 7: 51-56 (1985)
  16. Lee K, Paek K, Ju WT, Lee Y. Sterilization of bacteria, yeast, and bacterial endospores by atmospheric-pressure cold plasma using heliu, and oxygen. J. Microbiol. 44: 269-275 (2006)
  17. Yu H, Perni S, Shi JJ, Wang DZ, Kong MG, Shama G. Effects of cell surface loading and phase of growth in cold atmospheric gas plasma inactivation of Escherichia coli K 12. J. Appl. Microbiol. 101: 1323-1330 (2006) https://doi.org/10.1111/j.1365-2672.2006.03033.x
  18. Ben Gadri R, Reece Roth J, Montie TC, Kelly-Wintenberg K, Tsai PPY, Helfritch DJ, Feldman P, Sherman DM, Karakary F, Chen Z, UTK Plasma Sterilization Team. Sterilization and Plasma processing of room temperature (surfaces with a one atmosphere uniform glow discharge plasma (OAUGDP). Surf. Coat. Tech. 131: 528-542 (2000) https://doi.org/10.1016/S0257-8972(00)00803-3
  19. Ozen BF, Floros JD. Effects of emerging food processing techniques on the packaging materials. Trends. Food Sci. Tech. 12: 60-67 (2001) https://doi.org/10.1016/S0924-2244(01)00053-X
  20. Song HP, Kim B, Choe JH, Jung S, Moon SY, Choe WH, Jo C. Evaluation of atmospheric pressure plasma to improve the safety of sliced cheese and ham inoculated by 3-strain cocktail Listeria monocytogenes. Food Microbiol. 26: 432-436 (2009) https://doi.org/10.1016/j.fm.2009.02.010

Cited by

  1. Effect of atmospheric pressure plasma jet on the foodborne pathogens attached to commercial food containers vol.52, pp.12, 2015, https://doi.org/10.1007/s13197-015-2003-0
  2. Cold plasma treatment for microbial safety and preservation of fresh lettuce vol.24, pp.5, 2015, https://doi.org/10.1007/s10068-015-0223-8
  3. Sterilization and quality variation of dried red pepper by atmospheric pressure dielectric barrier discharge plasma vol.23, pp.7, 2016, https://doi.org/10.11002/kjfp.2016.23.7.960
  4. Nonthermal Processes for Shelf-Life Extension of Seafoods: A Revisit vol.17, pp.4, 2018, https://doi.org/10.1111/1541-4337.12354