DOI QR코드

DOI QR Code

Changes of Antioxidative Components and Activity of Fermented Tea during Fermentation Period

미생물을 이용한 후발효차의 발효기간별 항산화 성분 및 활성의 변화

  • Kim, Yong-Shik (Dept. of Food and Nutrition, Chungju National University) ;
  • Jo, Cheor-Un (Dept. of Animal Science and Biotechnology, Chungnam National University) ;
  • Choi, Goo-Hee (Dept. of Food and Nutrition, Chungju National University) ;
  • Lee, Kyung-Haeng (Dept. of Food and Nutrition, Chungju National University)
  • 김용식 (충주대학교 식품영양학과) ;
  • 조철훈 (충남대학교 동물자원생명과학과) ;
  • 최구희 (충주대학교 식품영양학과) ;
  • 이경행 (충주대학교 식품영양학과)
  • Received : 2011.05.11
  • Accepted : 2011.07.27
  • Published : 2011.08.31

Abstract

Changes of antioxidative components and activity of fermented tea manufactured by Bacillus subtilis, Saccharomyces cerevisiae, and Lactobacillus bulgaricus were evaluated during the fermentation period. The ascorbic acid content in the fermented tea was relatively lower (43.62~62.84 mg%) than that of green tea (66.74 mg%) during the entire fermentation period. The tea fermented by L. bulgaricus, which had the least contact with air, showed less change in ascorbic acid content. The polyphenol content of green tea was 14.88%, whereas that of fermented tea was 11.54~14.12% and it decreased during the fermentation period. The amount of flavonoids in green tea was 7.78 mg%, whereas that of fermented tea was 4.33~7.88 mg%. DPPH radical scavenging activity and ABTS reducing activity of green tea were 87.47% and 203.22 AEAC mg% (ascorbic acid equivalent antioxidant capacity), respectively, whereas those of fermented tea were lower than green tea. Results indicated that the antioxidative components and activity of fermented tea were lower than those of green tea during the fermentation period. But, when the sensory and hygienic quality are considered, fermented tea can be one of the higher quality tea products on the market.

위생적으로 안전성이 확보된 후발효차를 제조하기 위해 Bacillus subtilis, Saccharomyces cerevisiae 및 Lactobacillus bulgaricus를 이용하여 후발효차를 제조한 후 발효시간에 따른 항산화 성분 및 활성의 변화를 측정하였다. 후발효차의 ascorbic acid의 함량은 발효기간 내내 균종에 관계없이 녹차(66.74 mg%)에 비하여 비교적 낮은 함량(43.62~62.84 mg%)을 보였고 산소와의 접촉을 최소화한 L. bulgaricus 균에 의한 발효가 비교적 적은 변화를 보였다. Polyphenol 화합물의 함량은 녹차의 경우 14.88%였으며 후발효차는 11.54~14.12%로 세 균주 모두 발효가 진행됨에 따라 함량이 다소 감소하였다. 실험에 사용한 녹차의 flavonoid 함량은 7.78 mg%였으며 미생물을 이용한 후발효차의 경우에는 4.33~7.88 mg%로 대부분 녹차에서의 함량보다 적은 것으로 나타났다. 항산화 활성의 경우, 녹차의 DPPH 전자공여능 및 ABTS 항산화 활성은 각각 87.47% 및 203.22 AEAC mg%였으나 발효기간에 따른 후발효차에서는 녹차에 비하여는 낮은 활성을 보여 후발효차 제조 시 어느 정도 항산화 성분의 함량 및 활성이 다소 감소하게 되지만 미생물을 이용하여 후발효차를 제조 시 위생적이고 기호도가 우수한 제품을 생산할 수 있는 것으로 판단되었다.

Keywords

References

  1. Park SH, Lee HJ, Ma SJ, Park KH, Moon JH. 2009. An investigation on establishment of index for estimation of quality and preservation period of Pu-erh tea. J Kor Tea Soc 15: 59-67.
  2. Kim SH, Park J, Lee LS, Han DS. 1999. Effect of pH on the green tea extraction. Korean J Food Sci Technol 31: 1024-1028.
  3. Kim JT. 1996. Science and culture of green tea. Borim publisher, Paju, Korea. p 8-261.
  4. Jung DH, Kim JT. 2003. Science of tea. Daekwang publisher, Jeonju, Korea. p 51-53.
  5. Choi OJ, Choi KH. 2003. The physicochemical properties of Korean wild teas (green tea, semi-fermented tea, and black tea) according to degree of fermentation. J Korean Soc Food Sci Nutr 32: 356-362. https://doi.org/10.3746/jkfn.2003.32.3.356
  6. Wickremasinghe RL. 1978. Tea. In Advances in Food Research. Chichester CO, ed. Academic Press, New York. NY, USA. Vol 24, p 229-286.
  7. Byun JO, Han JS. 2004. A study on perception and actual status of utilization for green tea. Korean J Food Culture 19: 184-192.
  8. Lee EH, Lee JK, Hong JT, Jung KM, Kim YK, Lee SH, Chung SY, Lee YW. 2001. Protective effect of green tea extract, catechin on UVB-induced skin damage. J Fd Hyg Safety 16: 117-124.
  9. KFDA. 2007. Study of the safety evaluation for fermentation tea. Korea Food & Drug Administration. p 15-102
  10. Kim YS, Choi GH, Lee KH. 2010. Changes of chemical components of fermented tea during fermentation period. J Korean Soc Food Sci Nutr 39: 1807-1813. https://doi.org/10.3746/jkfn.2010.39.12.1807
  11. Park YK, Kim SH, Choi SH, Han JG, Chung HG. 2008. Changes of antioxidant capacity, total phenolics and vitamin C contents during Rubus coreanus fruit ripening. Food Sci Biotechnol 17: 251-256.
  12. AOAC International. 1995. AOAC official method 952.03 tannin in distilled liquors. Official methods of analysis. 16th ed. AOAC International, Gaithersburg, MD, USA. p 16-17.
  13. Moreno MN, Isla MIN, Sampietro AR, Vattuone MA. 2000. Comparison of the free radical scavenging activity of propolis from several region of Argentina. J Enthnopharmacol 71: 109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  14. Blois MS. 1958. Antioxidant activity determination by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  15. Robert R, Nicoletta P, Anna P, Ananth P, Ananth P, Min Y, Catherine RE. 1999. Antioxidant activity applying an improved improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  16. Kim BS, Yang WM, Choi J. 2002. Comparison of caffeine, free amino acid, vitamin C and catechins content of commercial green tea in Bosung, Sunchon, Kwangyang, Hadong. J Kor Tea Soc 8: 55-62.
  17. Kim K. 1977. Studies on the chemical constituents of the tea leaf. Korean J Food Sci Technol 9: 10-12.
  18. Woo HS, Choi HJ, Han HS, Park JH, Son JH, Ahn BJ, Son GM, Choi C. 2003. Isolation of polyphenol from green tea by HPLC and its physiological activities. Korean J Food Sci Technol 35: 1199-1203.
  19. Liu TL. 2003. Mechanism and clinical studies on the anticaries effect of green tea polyphenols. Korean J Food Sci Technol 7: 83-100.
  20. Jeong CH, Kang ST, Joo OS, Lee SC, Shin YH, Shim KH, Cho SH, Choi SG, Heo HJ. 2009. Phenolic content, antioxidant effect and acetylcholinesterase inhibitory activity of Korean commercial green, puer, oolong, and black teas. Korean J Food Preserv 16: 230-237.
  21. Jang MJ, Ha HJ, Yoon SR, Noh JE, Kwon JH. 2006. Prediction of optimal leaching conditions for green tea. J Korean Soc Food Sci Nutr 35: 747-753. https://doi.org/10.3746/jkfn.2006.35.6.747
  22. Son MY, Kim SH, Nam SH, Park SK, Sung NJ. 2004. Antioxidant activity of Korean green and fermented tea extracts. J Life Sci 14: 920-924. https://doi.org/10.5352/JLS.2004.14.6.920

Cited by

  1. Antioxidant and Antimicrobial Activities of Curcuma aromatica Salisb. with and without Fermentation vol.32, pp.3, 2016, https://doi.org/10.9724/kfcs.2016.32.3.299
  2. The Quality Characteristics of Stevia (Stevia rebaudiana Bert) Leaf Tea according to Different Manufacturing Processes vol.27, pp.2, 2014, https://doi.org/10.9799/ksfan.2014.27.2.156
  3. Changes of Nutrient Composition and Antioxidative Activities of Fermented Tea during Fermentation vol.26, pp.3, 2013, https://doi.org/10.9799/ksfan.2013.26.3.398
  4. Physicochemical Changes in Hemerocallis coreana Nakai After Blanching, Drying, and Fermentation vol.42, pp.10, 2013, https://doi.org/10.3746/jkfn.2013.42.10.1638
  5. Antioxidative Activity of Mushroom Water Extracts Fermented by Lactic Acid Bacteria vol.43, pp.1, 2014, https://doi.org/10.3746/jkfn.2014.43.1.080
  6. Antioxidant and Antibacterial Activities of Grape Pomace Fermented by Various Microorganisms vol.41, pp.8, 2012, https://doi.org/10.3746/jkfn.2012.41.8.1049
  7. Bacillus subtilis를 이용한 국내산 신이대 잎 발효에 따른 영양성분, 폴리페놀, 항산화능 변화 vol.32, pp.1, 2011, https://doi.org/10.7841/ksbbj.2017.32.1.63
  8. 발효숙성생강의 항산화 및 항균 활성 vol.24, pp.8, 2017, https://doi.org/10.11002/kjfp.2017.24.8.1180
  9. Fermentation Characteristics of Mulberry Concentrate by Lactic Acid Bacteria Isolated from Mulberry and Elderberry vol.34, pp.6, 2011, https://doi.org/10.9724/kfcs.2018.34.6.598
  10. 유산균을 이용한 발효 고구마의 품질 특성 및 항산화 활성 vol.32, pp.5, 2011, https://doi.org/10.9799/ksfan.2019.32.5.494