DOI QR코드

DOI QR Code

Environmental Test Results of a Flight Model of a Compact Imaging Spectrometer for a Microsatellite STSAT-3

과학기술위성3호 소형영상분광기 발사모델 환경시험 결과

  • Lee, Sang-Jun (Department of Optical Engineering, Kongju National University) ;
  • Kim, Jung-Hyun (Department of Optical Engineering, Kongju National University) ;
  • Lee, Jun-Ho (Department of Optical Engineering, Kongju National University) ;
  • Lee, Chi-Won (Department of Optical Engineering, Kongju National University) ;
  • Jang, Tae-Sung (Satellite Technology Research Center, Korea Advanced Institute of Science and Technology) ;
  • Kang, Kyung-In (Satellite Technology Research Center, Korea Advanced Institute of Science and Technology)
  • 이상준 (공주대학교 광공학과) ;
  • 김정현 (공주대학교 광공학과) ;
  • 이준호 (공주대학교 광공학과) ;
  • 이치원 (공주대학교 광공학과) ;
  • 장태성 (한국과학기술원 (KAIST) 인공위성연구센터) ;
  • 강경인 (한국과학기술원 (KAIST) 인공위성연구센터)
  • Received : 2011.06.10
  • Accepted : 2011.07.29
  • Published : 2011.08.25

Abstract

A compact imaging spectrometer (COMIS) was developed for a microsatellite STSAT-3. The satellite is now rescheduled to be launched into a low sun-synchronous Earth orbit (~700 km) by the end of 2012. Its main operational goal is the imaging of the Earth's surface and atmosphere with ground sampling distance of 27 m and 2 - 15 nm spectral resolution over visible and near infrared spectrum (0.4 - 1.05 ${\mu}m$). A flight model of COMIS was developed following an engineering model that had successfully demonstrated hyperspectral imaging capability and structural rigidity. In this paper we report the environmental test results of the flight model. The mechanical stiffness of the model was confirmed by a small shift of the natural frequency i.e., < 1% over 10 gRMS random vibration test. Electrical functions of the model were also tested without showing any anomalies during and after vacuum thermal cycling test with < $10^{-5}$ torr and $-30^{\circ}C\;-\;35^{\circ}C$. The imaging capability of the model, represented by a modulation transfer function (MTF) value at the Nyquist frequency, was also kept unvaried after all those environmental tests.

과학기술위성3호 부탑재체인 소형영상분광기 COMIS(Compact Imaging Spectrometer)는 400 - 1050 nm의 관측 대역에서 분광 관측을 수행하는 영상 분광기이다. COMIS는 2012년 고도 700 km의 원 궤도에서 발사 된 후 27 m의 공간분해능과 2 - 15 nm의 파장 분해능을 갖도록 설계되었다. 본 논문에서는 COMIS 비행 모델의 환경시험 수행결과를 기술한다. 발사 환경인 진동 가진에 의한 영상분광기의 광학적, 구조적인 변화 여부와 우주환경인 열.진공 상태에서의 기능 시험을 수행하여 안정성 및 신뢰성을 검증 받았다. 우주공간에서의 환경으로 일컬어지는 고진공($10^{-5}$ torr이하)과 $-30^{\circ}C{\sim}35^{\circ}C$의 고온 및 저온의 열적 변화 상태를 모사하는 시험에서 정상적인 기능을 보였고, 10 grms의 랜덤 진동 가진 전.후의 고유 진동수는 1% 이내의 변화량을 보였다. 환경시험 전 후로 영상분광기의 변조전달함수(MTF, Modulation Transfer Function) 측정을 하여 광학 성능이 유지됨을 확인하였다. 환경시험을 마친 영상분광기는 현재 과학기술위성3호 본체와의 조립을 진행 중에 있으며 2012년 발사 예정에 있다.

Keywords

References

  1. G. ElMasry and D.-W. Sun, "Chap 1. Principles of hyperspectral imaging technology," in Hyperspectral Imaging for Food Quality Analysis and Control, D.-W. Sun, ed. (Academic Press, Dublin, Ireland, 2010).
  2. D. Manolakis, D. Marden, and G. A. Shaw, "Hyperspectral image processing for automatic target detection applications," Linconln Laboratory Journal 14, 79-116 (2003).
  3. J. P. Kerekes and J. E. Baum, "Hyperspectral imaging system modeling," Linconln Laboratory Journal 14, 117-130 (2003).
  4. D.-S. Kim, D.-H. Park, S.-K. Choi, and S.-W. Ra, "Radiometric calibration of FTIR spectrometer for passive remote sensing application," Hankook Kwanghak Hoeji (Korean J. Opt. Photon.) 17, 391-395 (2006). https://doi.org/10.3807/KJOP.2006.17.5.391
  5. N. H. Brogea and E. Leblancb, "Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density," Remote Sensing of Environment 76, 156-172 (2000).
  6. X. Briottet, Y. Boucher, A. Dimmeler, A. Malaplate, A. Cini, M. Diani, H. Bekman, P. Schwering, T. Skauli, I. Kasen, I. Renhorn, L. Klasén, and D. Oxford, "Military applications of hyperspectral imagery," Proc. SPIE 6239, 62390B (2006).
  7. J. H. Lee, T. S. Jang, H.-S. Yang, and S.-W. Rhee, "Optical design of a compact imaging spectrometer for STSAT3," J. Opt. Soc. Korea 12, 262-268 (2008).
  8. J. H. Lee, C. W. Lee, Y. M. Kim, and J. W. Kim, "Optomechanical design of a compact imaging spectrometer for a microsatellite STSAT3," J. Opt. Soc. Korea 13, 193-200 (2009). https://doi.org/10.3807/JOSK.2009.13.2.193
  9. J. H. Lee, K. I. Kang, and J. H. Park, "A very compact imaging spectrometer for the micro-satellite STSAT3," International Jounral of Remote Sensing 32, (2011) (in publication process).
  10. P. G. Doukas, J. R. McCandless, T. P. Sarafin, and W. R. Britton, "11.6 strutures and mechanism," in Space Mission Analysis and Design, W. J. Larson and J. R. Wertz, ed. (Microcosm, Inc., California, USA, 1991).
  11. E. Perez, Ariane 5 User's Manual (Arianspace, Cedex, France, 2008).
  12. K. Tahk, J. Lee, S. Lee, E. D. Kim, W. Cha, and S. Youn, "Launch environmental test results of KAISTSAT-4 QM," Jounral of Korean Socieity for Aeronautical & Space Sciences 30, 124-129 (2002).
  13. C. J. Moening, March 1984, "Pyrotechnic shock flight failures," in Proc. of Institute of Environmental Science, 95-103 (1985).
  14. G. D. Boreman, Modulation Transfer Function in Optical and Eletro-optical System (SPIE Press, Washington, USA, 2001).
  15. S. M. Hong, H. N. Kim, J. H. Jo, Y. W. Lee, H. Y. Lee, H. S. Yang, I. W. Lee, and J. H. Jung, "MTF measuring equipment of optical system for LCD substrate inspection," Hankook Kwanghak Hoeji (Korean J. Opt. Photon.) 18, 37-43 (2007). https://doi.org/10.3807/HKH.2007.18.1.037
  16. Y.-W. Lee, H.-M. Cho, I.-W. Lee, T. H. Park, S. G. Yun, and H. W. Seo, "CCD scanning type MTF measruing system for microlens arrays," Hankook Kwanghak Hoeji (Korean J. Opt. Photon.) 5, 364-371 (1994).
  17. B. Tatian, "Method for obtaining the transfer function from the edge response function," J. Opt. Soc. Am. 55, 1014-1019 (1965). https://doi.org/10.1364/JOSA.55.001014
  18. D. N. Sitter, J. S. Goddard Jr., and R. K. Ferrell, "Method for the measurement of the modulation transfer function of sampled imaging systems from bar-target patterns," Appl. Opt. 34, 746-751 (1995). https://doi.org/10.1364/AO.34.000746
  19. http://www.imatest.com/.
  20. R. K. McMordie, "11.5 thermal," in Space Mission Analysis and Design, W. J. Larson and J. R. Wertz, ed. (Microcosm, Inc., California, USA, 1991).
  21. E. D. Kim, Y.-H. Jeong, J. H. Lee, K. Tahk, W.-H. Cha, S.-H. Lee, S.-W. Choi, G.-W. Moon, and S.-K. Youn, "Thermal vacuum test of KAISTSAT-4 QM," Jounral of Korean Socieity for Aeronautical & Space Sciences 31, 120-124 (2003).

Cited by

  1. System Level Space Environment Testing of Satellite Digital Transponder vol.38C, pp.12, 2013, https://doi.org/10.7840/kics.2013.38C.12.1159
  2. Applicability of Hyperspectral Imaging Technology for the Check of Cadastre's Land Category vol.32, pp.spc4_2, 2014, https://doi.org/10.7848/ksgpc.2014.32.4-2.421
  3. Stray Light Analysis of a Compact Imaging Spectrometer for a Microsatellite STSAT-3 vol.23, pp.4, 2012, https://doi.org/10.3807/KJOP.2012.23.4.167