DOI QR코드

DOI QR Code

Contact Pressure of Non-Pneumatic Tires with Auxetic spokes

Auxetic Spoke로 설계된 비공기압 타이어의 접지압

  • 김광원 (한국항공대학교 항공우주공학과) ;
  • 김두만 (한국항공대학교 항공우주공학과)
  • Received : 2011.04.18
  • Accepted : 2011.07.15
  • Published : 2011.08.01

Abstract

A Non_Pneumatic tire (NPT) has spoke to replace air of the pneumatic tires. A NPT appears to have advantages over the conventional pneumatic tire in terms of flat proof and maintenance free. And a NPT can also be used in the space environment since it uses no air for inflation. In this study, the static contact pressure of NPTs with auxetic honeycomb spokes is investigated as a function of vertical loading and is compared with that of a pneumatic tire. The finite element based numerical simulation of the local stress of an airless tire is carried out with ABAQUS for varying vertical force and honeycomb spokes geometries.

비공기압 타이어(Non-Pneumatic tire)는 공기압 타이어와는 다르게 스포크(Spoke)로 공기압의 역할을 담당하는 새로운 타이어이다. 이 타이어는 공기압 타이어의 펑크에 대한 위험과 공기압 유지가 필요 없는 장접을 가졌으며, 공기가 존재하지 않는 우주에서도 사용이 가능하다. 본 연구에서는 음의 각으로 이뤄진 허니컴 구조의 비공기압 타이어를 수직 하중에 따른 접지압을 구하여, 이를 공기압 타이어와 비교하였다.

Keywords

References

  1. Gent, A.N, and Walter, J.D. 1985, The Pneumatic tire, National Highway Traffic Safety Administration, Washington DC.
  2. Gough V.E., (1958), "Tyre-To-Ground Contact Stress", Stress Analysis Group Conference on Contact Stress, Vol. 2, No. pp. 126-59.
  3. Cho J.R., Kim K.W., Yoo W.S., and Hong S.I., (2004), "Mesh generation considering detailed tread blocks for reliable 3D tire analysis", Advances in engineering software, Vol. 35, No. pp. 105-113. https://doi.org/10.1016/j.advengsoft.2003.10.002
  4. Manuel J. Fabela-Gallegos, Ricardo Hernandez-Jimemez, Alberto Reyes- Vidales, (2007), "Effect of Load and Inflation Pressure on contact Force and Pressure Distribution for Two Types of Light Duty Truck Tires", Society of Automotive Engineers Inc, Vol. 2146, No. pp. 15-22.
  5. Mohsenimanesh A., Ward S.M., and Gilchrist M.D., (2009), "Stress analysis of a multi-laminated tractor tyre using nonlinear 3D finite element analysis", Materials and Design, Vol. 30, No. pp. 1124-1132. https://doi.org/10.1016/j.matdes.2008.06.040
  6. Jeong H.S., Kim N.J., and Kim K.W., (2002), "Tread Shape Optimization for Optimum Contact Pressure", Korea Society of Automotive Engineers, Vol. 5, No. pp. 63-68.
  7. Kim S.H., (2002), "A Comprehensive analytical model for Pneumatic tires", The University of Arizona, Ph.D. Dissertation.
  8. Julien Cesbron, Fabienne Anfosso-Ledee, Denis Duhamel, (2009), "Experimental study of tyre/road contact forces in rolling conditions for noise prediction", Journal of sound and vibration, Vol. 320, No. pp. 125-144. https://doi.org/10.1016/j.jsv.2008.07.018
  9. Akasaka, T., Katoh, M., Nihei, S., Hiraiwa, M., "Two-Dimensional Contact Pressure Distribution of a Radial tire", Tire Science and Technology, TSTCA, Vol. 18, No. 2, April-June, 1990, pp. 80-103. https://doi.org/10.2346/1.2141696
  10. Kim, D.M., Park, I.J., Yoo, H.S., Seong, K.J., Kim, S.N., "Effect of Shearing Force on the Contact Stresses of the Tread Rubber Block with Slip", 21th Annual Meeting Conference on Tire Science & Technology, Paper No. 2. 2002. 9.
  11. Alfredo, R.V., 1967, Airless Tire, U.S. Patent, US 3,329192.
  12. Kubica, W. and Schmidt, O., 1979, Self-Supporting Motor Vehicle Tire, U.S. Patent, US 4,169,494.
  13. Manesh, A., Terchea, M., Anderson, B., Meliska, B., Ceranski, F, Tension-Based Non-Pneumatic tire, 2008, World Intellectual Property Organization, WO 2008/118983 A1.
  14. Rhyne, T. and Cron, S. M., 2006, "Development of a Non-Pneumatic Wheel", Tire Science and Technology, Vo1. 34, pp. 150-169. https://doi.org/10.2346/1.2345642
  15. Ju,J., Ananthasayanam, B, Summers, J.D., and Joseph, P., 2010, Design of Cellular Shear Bands of a Non-Pneumatic tire - Investigation of Contact Pressure, SAE International Journal of Passenger Cars - Mechanical Systems, 3(1):598-606. https://doi.org/10.4271/2010-01-0768
  16. J. Ma, J. Ju, J.D. Summers*, and P. Joseph, Effects of Cellular Shear Bands on Interaction between a Non-Pneumatic tire and Sand, In Proceedings of the SAE 2010 World Congress and Exhibition, 10AC-0108, Detroit, MI.
  17. Jaehyung Ju, Balajee Ananthasayanam, Joshua Summers, and Paul Joseph, 2010, "Design of Cellular.
  18. Shear Bands of a Non-Pneumatic tire - Investigation of Contact Pressure", SAE International.
  19. Abd El-Sayed, F. K., Jones, R., and Burgess, I. W. (1979), A Theoretical Approach to the Deformation of Honeycomb Based Composite Materials, Composites, Vol. 10, No. 4, pp. 209-214. https://doi.org/10.1016/0010-4361(79)90021-1
  20. Gibson, L. J., Ashby, M. F., Schajer, G.S. and Robertson, C. I. (1982), The Mechanics of Two-Dimensional Cellular Materials, Proceedings of The Royal Society A, 382, pp. 25-42. https://doi.org/10.1098/rspa.1982.0087
  21. Masters, I. G. and Evans, K. E., (1996), "Models for the Elastic Deformation of Honeycombs", Composite Structures, Vol. 35, No. pp. 403-22. https://doi.org/10.1016/S0263-8223(96)00054-2

Cited by

  1. The Analysis of Energy Loss of Pneumatic Tire and Non-pneumatic Tire on Impact vol.22, pp.1, 2014, https://doi.org/10.7467/KSAE.2014.22.1.110