DOI QR코드

DOI QR Code

Scenario Analysis of Dioxins Behaviors In Ulsan Bay of Korea using EMT-3D Model

EMT-3D 모델을 이용한 울산만 Dioxins 거동에 관한 시나리오 분석

  • Kim, Dong-Myung (Department of Ecological Engineering, Pukyong National University)
  • 김동명 (부경대학교 생태공학과)
  • Received : 2011.02.17
  • Accepted : 2011.06.23
  • Published : 2011.06.30

Abstract

A three dimensional ecological model(EMT-3D) was applied to Ulsan Bay for the simulation of Dioxins. The simulated results of dissolved Dioxins were in agreement with the observed values, with a correlation coefficient(R) of 0.7951 and a coefficient of determination($R^2$) of 0.6265. The results of sensitivity analysis showed that partition rate, adsorption rate and bioconcentration factor were important factors. Therefore, the parameters must be carefully considered in the modeling. In the case of 50% and 80% total loads reduction, concentration of dissolved Dioxins was shown to be lower than 0.150 and 0.250 pg WHD-TEQ/L, respectively.

Acknowledgement

Grant : 내분비계 장애물질 해양내 거동 연구

Supported by : 국립수산과학원

References

  1. 국토해양부(2008), 2008년 해양생태계내 내분비계 장애 물질 연구보고서, p. 793.
  2. 김동명(2011), EMT-3D 모델을 이용한 진해만 $PAH_s$의 거동 예측 시뮬레이션, 해양환경안전학회지, 제17권, 제1호, pp. 7-13.
  3. 환경부(2002a), 다이옥신배출량 산정기법 개발, p. 219
  4. 환경부(2002b), 다이옥신실측사업, p. 908
  5. 해양과학공동연구소(부경대학교)(2001), 음식물 잔재물 해양배출에 따른 타당성 조사연구 보고서, p. 80.
  6. Caramaschi, F. G. del Caion and C. Favaretti(1981), Chloracne following environmental by TCDD in Seveso, Italy. Int. J. Epidemiol. 10, pp. 135-325. https://doi.org/10.1093/ije/10.2.135
  7. Choi, B. H.(1980), A tidal model of the Yellow Sea and the Eastern China Sea. Korea Ocean Research and Development(KORDI), rep. 80-02, p. 70.
  8. Fiedler, H.(1996), Sources of PCDD/PCDF and Impact on the Environment, Chemosphere 32, pp. 55-64. https://doi.org/10.1016/0045-6535(95)00228-6
  9. Jorgensen, S. E.(1994), Fundamentals of Ecological Modelling. 2nd ed., Elsevier, p. 632.
  10. Jorgensen, L. A., S. E. Jorgensen and S. N. Nielsen (2000), Ecologkal Modelling and Ecotoxicology, Elsevier, Electronic DB file.
  11. Kim, D. M., N. Nakada, T. Horiguchi, H. Takada, H. Shiraishi and O. Nakasugi(2004), Numerical simulation of organic chemicals in a marine environment using a coupled 3D hydrodynamic and ecotoxicological model, Marine Pollution Bulletin 48(7-8), pp. 671-678. https://doi.org/10.1016/j.marpolbul.2003.10.010
  12. Kobayashi, N.(2004), Fluxes and mass balance of dioxins in the Tokyo Bays basin, Aquabiology 26(5), pp. 410-117.
  13. Kobayashi, N., K. Nalmta, T. Eriguchi, F. Horiguchi, J. Nakanishi and S. Masunaga(2004), Application of a mathematical model to predict dioxin concentrations in the Tokyo Bay estuary, Organohalogen Compounds 66, pp. 2341-2347.
  14. Mackay, D., W. Y. Shiu, K. Ma and S. C. Lee (2006), Physical-Chemical Properties and Environmental Fate for Organic Chemicals. Second Edition, Taylor & Francis, p. 4216.
  15. Mocarelli, P., L. L. Needham, A. Marocchi(1991), Serum concentrations of 2,3,7,8,-tetrachlorodibenzo-p-dioxin and test results from selected residents of Seveso, Ialy, J. Toxicol. Environ, Health, 32, pp. 357-366. https://doi.org/10.1080/15287399109531490
  16. Naito, W.(2004), Bioaccumulation of dioxins for aquatic organisms in Tokyo Bays, Aquabiology 26(5), pp. 427-433.

Cited by

  1. Distribution Characteristics of Polycyclic Aromatic Hydrocarbons(PAHs) in Riverine Waters of Ulsan Coast, Korea vol.18, pp.5, 2012, https://doi.org/10.7837/kosomes.2012.18.5.398
  2. Numerical Simulation of Ammonium Perfluorooctance (PFOA) in Gwangyang Bay vol.49, pp.5, 2016, https://doi.org/10.5657/KFAS.2016.0665
  3. Temporal and Spatial Distribution of Butyltin Compounds in Marine Sediments from Ulsan Bay, Korea vol.19, pp.1, 2014, https://doi.org/10.7850/jkso.2014.19.1.1