Determination of Ametryn Residue in Agricultural Commodities Using HPLC-UVD/MS

HPLC-UVD/MS를 이용한 농산물 중 ametryn의 분석

  • Lee, Su-Jin (Dept of Herbal Medicine Resource, Kangwon National University) ;
  • Kim, Young-Hak (Dept of Herbal Medicine Resource, Kangwon National University) ;
  • Song, Lee-Seul (Dept of Herbal Medicine Resource, Kangwon National University) ;
  • Choung, Myoung-Gun (Dept of Herbal Medicine Resource, Kangwon National University)
  • 이수진 (강원대학교 생약자원개발학과) ;
  • 김영학 (강원대학교 생약자원개발학과) ;
  • 송이슬 (강원대학교 생약자원개발학과) ;
  • 정명근 (강원대학교 생약자원개발학과)
  • Received : 2011.05.26
  • Accepted : 2011.06.09
  • Published : 2011.06.30


Ametryn is used in USA, China, and Japan, but not introduced in Korea yet. So, MRL (Maximum Residue Level), and analytical method of ametryn were not establishment in Korea. Therefore, this experiment was conducted to establish a determination method for ametryn residue in crops using HPLC-UVD/MS. Ametryn residue was extracted with acetone from representative samples of five raw products which comprised hulled rice, soybean, apple, green pepper, and Chinese cabbage. The extract was diluted with saline water, and dichloromethane partition was followed to recover ametryn from the aqueous phase. Florisil column chromatography was additionally employed for final clean up of the extract. The ametryn was quantitated by HPLC with UVD, using a Tosoh ODS 120T ($4.6{\times}250$ mm) column. The crops were fortified with ametryn at 2 levels per crop. Mean recovery ratio were ranged from 83.7% for a 0.2 mg/kg in soybean to 91.1% for a 1.0 mg/kg in hulled rice. The coefficients of variation were ranged from 1.2% for a 1.0 mg/kg in hulled rice to 3.6% for a 1.0 mg/kg in soybean. Quantitative limit of amatryn was 0.02 mg/kg in representative 5 crop samples. A LC/MS with selected-ion monitoring was also provided to confirm the suspected residue. Therefore, this analytical method was reproducible and sensitive enough to determine the residue of ametryne in agricultural commodities.

국내 미등록 농약인 triazine계 제초제인 ametryn에 대해 HPLC-UVD/MS를 이용한 농산물 시료의 잔류 분석법을 확립하였다. 농산물 시료에 acetone을 가하여 추출된 ametryn의 잔류분은 dichloromethane 분배법과 florisil 흡착 크로마토그래피법으로 정제하여 분석대상 시료로 하였다. $C_18$ 컬럼을 이용한 HPLC 분석 시 불순물의 간섭은 없었으며, 대표 농산물 중 ametryn의 분석정량한계(LOQ)는 0.02 mg/kg이었다. 전체 농산물에 대한 회수율은 81.1~91.1%였으며, 농산물 시료 및 처리수준에 관계없이 10%미만의 분석오차를 나타내어 잔류분석 기준이내를 만족하였다. 본 연구에서 확립한 triazine계 제초제인 ametryn의 잔류분석법은 검출한계, 회수율 및 분석오차 면에서 국제적 분석기준을 만족할 뿐만 아니라, LC/MS SIM을 이용한 잔류분의 재확인과정 및 회수율 검증의 결과를 총괄해 볼 때 분석과정의 편이성 및 신뢰성이 확보된 공정분석법으로 사용이 가능할 것으로 판단된다.



  1. AOAC (2000) 'Pesticide and industrial chemical residues, In Official method of analysis', 17th ed., pp. 1-88, AOAC International, Arlington, VA, USA.
  2. Codex Alimentarius Commission (2003) Guidelines on good laboratory practice in residue analysis, CAC/GL 40-1993, Rev.1-2003, Rome, Italy.
  3. Dale, L. S., L. J. Krutz, W. B. Henry, B. D. Hanson, M. D. Poteet, and C. R. Rainbolt (2010) Sugarcane soils exhibit enhanced atrazine degradation and cross adaptation to other s-triazines, Journal American Society of Sugar Cane Technologists 30:1-10
  4. Farre, M. J. Fernandez, M. Paez, L. Granada, L. Barba, H. M. Gutierrez, C. Pulgrarin, and D. Barcelo (2002) Analysis and toxicity of methomyl and ametryn after biodegradation. Anal. Bioanal. Chem. 373:704-709
  5. Fong, W. G., H. A. Moye, J. N. Seiber, and J. P. Toth (1999) Pesticide residues in food; Methods, technologies, and regulations. Wiley Interscience. pp. 3-4, 40-44, Canada.
  6. Glaucia, M. F., I. C. Pinto, and S. F. Jardim (2000A) Mobile phase optimization for the seperation of some herbicide samples using HPLC. Journal of Liquid Chromatography & Related Technologies 23(9):1353-1363
  7. Glaucia, M. F., I. C. Pinto, and S. F. Jardim (2000B) Use of solid-phase extraction and high-performance liquid chromatography for the determination of triazine residues in water: validation of the method. Journal of Chromatography A 869:463-469
  8. International Uniform Chemical Information Database Dataset (IUCLID) (2000) European Commission European Chemicals Bureau.
  9. John, R. D., G. Wade, and I. J. Barnabas (1996) Determination of triazine herbicides in environmental samples. Journal of Chromatography A. 733:295-335
  10. Kwon, C. H., M. I. Chang, M. H. Im, H. Choi, D. I. Jung, S. C. Lee, J. Y. Yu, Y. D. Lee, J. O. Lee, and M. K. Hong (2008) Determination of mandipropamid residues in agricultural commodities using high-performance liquid chromatography with mass spectrometry. Analytical Sci. & Technology 21(6):518-525.
  11. Lee, J., H. Park, Y. Keum, C. Kwon, Y. Lee, and J. Kim (2008) Dissipation pattern of boscalid in cucumber under green house condition. Korean Journal of Pesticide Science 12:67-73.
  12. Lee, S. J., Y. S. Hwang, Y. H. Kim, M. Y. Nam, S. B. Hong, W. K. Yun, C. H. Kwon, J. A. Do, M. H. Im, Y. D. Lee, and M. G. Choung (2010) Determination of fomesafen residue in agricultural commodities using HPLC-UVD/MS. Korean J. of Pesticide Sci. 14(2):100-108
  13. Lowell, A. Kleper (1979) Effects of certain herbicides and their combinations of nitrate and nitrite reduction. Plant Physiology 64:273-275.
  14. Lucio, F. C. M., C. H. Collins, and I. C. S. F. Jardim (2004) New materials for solid-phase extraction and multiclass high-performance liquid chromatographic analysis of pesticides in grapes. Journal of Chromatography A 1032:51-58.
  15. Miller, J. M. (2005) Chromatography : concepts and contrasts (2nd), Wiley Intersciense, p. 286-287, USA.
  16. Tadeo, J. L., C. S. Brunete, A. I. Garcia-Valcarcel, L. Martinez, and R. A. Perez (1996) Determination of cereal herbicide residue in environmental samples by gas chromatography. Journal of Chromatography A 754:347-365.
  17. US FDA (1999) 'Pesticide Analytical Manual, Vol 1: Multi residue Methods (3rd ed.), US Food and Drug Administration, USA.
  18. 식품의약품안전청 (2009) 식품공전.
  19. 이영득 (2011) 식품공전 잔류농약분석법 실무 해설서, 식품의약품안전청.
  20. 장미라, 문현경, 김태랑, 육동현, 김정현, 박석기 (2010) 서울지역 유통 채소류 섭취에 따른 잔류 농약의 위해성 평가. 한국영양학회지 43(4):404-412.