BCL2L10 Protein Induces Apoptosis in KGN-Human Granulosa Cells

KGN(난소과립세포)에서 BCL2L10 단백질의 세포사멸 유도 기능 연구

  • Kim, Jae-Hong (Dept. of Pharmacy, College of Pharmacy, CHA University) ;
  • Lee, Kyung-Ah (Dept. of Biomedical Science, College of Biomedical Science, CHA University) ;
  • Bae, Jee-Hyeon (Dept. of Pharmacy, College of Pharmacy, CHA University)
  • 김재홍 (차의과학대학교 약학대학 약학과) ;
  • 이경아 (차의과학대학교 의생명과학대학 의생명과학과) ;
  • 배지현 (차의과학대학교 약학대학 약학과)
  • Received : 2011.03.22
  • Accepted : 2011.06.10
  • Published : 2011.06.30

Abstract

BCL-2 family essential proteins to play a pivotal role to perform in apoptosis signaling pathways and essential proteins for the regulation of cell death. BCL2L10 protein is a member of BCL-2 family and it regulates both anti-apoptotic and pro-apoptotic function of specific tissue or cell line. BCL2L10 of function and expression is not reported in ovary cell lines. In this study we reported that BCL2L10 were significant expression of KGN cell line. Ectopic expression of BCL2L10 induced cell death, and its cells killing effect was blocked by pan-caspase inhibitor of the Z-VAD-fmk. Ectopic expression of BCL2L10 protein led to the activation of caspase 9 and caspase 3, suggesting apoptotic cell death, and confocal microscopic analyses showed that BCL2L10 was partially localized in mitochondria. Thus, we provide a novel function of BCL2L10 in KGN cells, which was involved in the intrinsic cell death pathway.

BCL-2 family 단백질들은 세포사멸 신호전달 체계에서 중추적인 역할을 수행하는 것으로 알려져 있으며, BCL2L10 단백질은 그 중 하나로 세포의 사멸과 생존을 조절하는 것으로 알려져 있다. 특이하게도 BCL2L10 단백질은 세포 또는 조직 특이적으로 서로 상반되는 친 세포사멸 또는 항 세포사멸 효과가 각각 보고되어 있다. 현재까지 난소세포에서의 BCL2L10의 발현 여부 및 기능은 알려져 있지 않다. 따라서 본 연구에서 인간 난소 과립세포주인 KGN 세포에서의 BCL2L10 단백질의 발현 여부를 확인한 결과, 상당한 양의 단백질이 발현함을 확인할 수 있었으며, 또한 세포사멸효과를 확인하기 위해서 BCL2L10 단백질을 dose-dependent하게 과발현시킨 후 세포의 생존에 미치는 영향을 분석한 결과,BCL2L10은 KGN 세포에서 과발현 시 세포사멸을 유도함을 관찰하였다. BCL2L10 단백질을 과발현 시 Caspase 9와 3를 활성화 하였으며, 면역염색법을 통해서 BCL2L10 단백질이 미토콘드리아에 위치하는 것을 확인하였다. 또한 BCL2L10단백질의 과발현에 의해 미토콘드리아에서 cytochrome c가 세포질로 분비되는 것을 확인하였다. 이상의 결과로서 본 연구는 BCL2L10의 과발현이 KGN 세포에서 세포사멸을 유도하고, 또한 미토콘드리아에 위치하여 세포질로 cytochrome c를 분비하여 Caspase 9와 3을 활성화 시키는 메커니즘으로 세포사멸을 유도함을 확인하였다. 이러한 연구결과는 BCL2L10단백질이 인간 난소과립세포의 생존과 사멸을 조절하는 인자임을 최초로 규명한 것으로서, 추후 난소에서의 BCL2L10단백질의 생리적인 기능 및 신호 조절 연구의 기반 데이터로서 그 의의가 있으며 활용될 수 있다.

Keywords

References

  1. Arnoult D (2008) Apoptosis-associated mitochondrial outer membrane permeabilization assays. Methods 44:229- 234. https://doi.org/10.1016/j.ymeth.2007.11.003
  2. Assou S, Anahory T, Pantesco V, Le Carrour T, Pellestor F, Klein B, Reyftmann L, Dechaud H, De Vos J, Hamamah S (2006) The human cumulus-oocyte complex gene-expression profile. Hum Reprod 21:1705-1719. https://doi.org/10.1093/humrep/del065
  3. Chipuk JE, Bouchier-Hayes L, Green DR (2006) Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ 13:1396-1402. https://doi.org/10.1038/sj.cdd.4401963
  4. de Moraes-Ruehsen M, Jones GS (1967) Premature ovarian failure. Fertil Steril 18:440-461. https://doi.org/10.1016/S0015-0282(16)36362-2
  5. Grondahl ML, Nielsen ME, Dal Canto MB, Fadini R, Rasmussen IA, Westergaard LG, Kristensen SG, Yding Andersen C (2007). Anti-Mullerian hormone remains highly expressed in human cumulus cells during the final stages of folliculogenesis. Reprod Biomed Online.
  6. Guillemin Y, Lalle P, Gillet G, François Guerin J, Hamamah S, Aouacheria A (2009) Oocytes and early embryos selectively express the survival factor BCL2L10. Mol Med 87:923-940. https://doi.org/10.1007/s00109-009-0495-7
  7. Hamamah S, Matha V, Berthenet C, Anahory T, Loup V, Dechaud H, Hedon B, Fernandez A, Lamb N (2006) Comparative protein expression profiling in human cumulus cells in relation to oocyte fertilization and ovarian stimulation protocol. Reprod Biomed Online 13:807-814. https://doi.org/10.1016/S1472-6483(10)61028-0
  8. Hamatani T, Falco G, Carter MG, Akutsu H, Stagg CA, Sharov AA, Dudekula DB, VanBuren V, Ko MS (2004) Age-associated alteration of gene expression patterns in mouse oocytes. Hum Mol Genet 13:2263-2278. https://doi.org/10.1093/hmg/ddh241
  9. Hartley PS, Bayne RA, Robinson LL, Fulton N, Anderson RA (2002) Developmental changes in expression of myeloid cell leukemia-1 in human germ cells during oogenesis and early folliculogenesis. J Clin Endocrinol Metab 87:3417-3427. https://doi.org/10.1210/jc.87.7.3417
  10. Hoek A, Schoemaker J, Drexhage HA (1997) Premature ovarian failure and ovarian autoimmunity. Endocr Rev 18:107-134. https://doi.org/10.1210/er.18.1.107
  11. Inohara N, Gourley TS, Carrio R, Muniz M, Merino J, Garcia I, Koseki T, Hu Y, Chen S, Nunez G (1998) Diva, a Bcl-2 homologue that binds directly to Apaf-1 and induces BH3-independent cell death. J Biol Chem 273:32479-32486. https://doi.org/10.1074/jbc.273.49.32479
  12. Jurisicova A, Antenos M, Varmuza S, Tilly JL, Casper RF (2003) Expression of apoptosis-related genes during human preimplantation embryo development: potential roles for the Harakiri gene product and Caspase-3 in blastomere fragmentation. Mol Hum Reprod 9:133-141. https://doi.org/10.1093/molehr/gag016
  13. Kang Y, et al (2007) NM23-H2 involves in negative regulation of Diva and Bcl2L10 in apoptosis signaling. Biochem Biophys Res Commun 359:76-82. https://doi.org/10.1016/j.bbrc.2007.05.090
  14. Ke N, Godzik A, Reed JC (2001) Bcl-B, a novel Bcl-2 family member that differentially binds and regulates Bax and Bak. J Biol Chem 276:12481-12484. https://doi.org/10.1074/jbc.C000871200
  15. Kim H, Rafiuddin-Shah M, Tu HC, Jeffers JR, Zambetti GP, Hsieh JJ, Cheng EH (2006) Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol 8: 1348-1358. https://doi.org/10.1038/ncb1499
  16. Kim JH, Yoon S, Won M, Sim SH, Ko JJ, Han S, Lee KA, Lee K, Bae J (2009) HIP1R interacts with a member of Bcl-2 family, BCL2L10, and induces BAKdependent cell death. Cell Physiol Biochem 23:43-52. https://doi.org/10.1159/000204088
  17. Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR, Newmeyer DD (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17:525-535. https://doi.org/10.1016/j.molcel.2005.02.003
  18. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479-489. https://doi.org/10.1016/S0092-8674(00)80434-1
  19. Melka M, Rings F, Holker M, Tholen E, Havlicek V, Besenfelder U, Schellander K, Tesfaye D (2010) Expression of apoptosis regulatory genes and incidence of apoptosis in different morphological quality groups of In Vitro-produced bovine pre-implantation embryos. Reprod Domest Anim 45(5):915-921.
  20. Nishi Y, Yanase T, Mu Y, Oba K, Ichino I, Saito M, Nomura M, Mukasa C, Okabe T, Goto K, Takayanagi R, Kashimura Y, Haji M, Nawata H (2001) Establishment and characterization of a steroidogenic human granulosalike tumor cell line, KGN, that expresses functional follicle-stimulating hormone receptor. Endocrinology 142:437-445. https://doi.org/10.1210/en.142.1.437
  21. Reers M, Smiley ST, Mottola-Hartshorn C, Chen A, Lin M, Chen LB (1995) Mitochondrial membrane potential monitored by JC-1 dye. Methods Enzymol 260:406-417.
  22. Shah SP, Kobel M, Senz J, Morin RD, Clarke BA, Wiegand KC, Leung G, Zayed A, Mehl E, Kalloger SE, Sun M, Giuliany R, Yorida E, Jones S, Varhol R, Swenerton KD, Miller D, Clement PB, Crane C, Madore J, Provencher D, Leung P, DeFazio A, Khattra J, Turashvili G, Zhao Y, Zeng T, Glover JN, Vanderhyden B, Zhao C, Parkinson CA, Jimenez-Linan M, Bowtell DD, Mes-Masson AM, Brenton JD, Aparicio SA, Boyd N, Hirst M, Gilks CB, Marra M, Huntsman D (2009) Mutation of FOXL2 in granulosa-cell tumors of the ovary. N Engl J Med 360:2719-2729. https://doi.org/10.1056/NEJMoa0902542
  23. Simmons MJ, Fan G, Zong WX, Degenhardt K, White E, Gelinas C (2008). Bfl-1/A1 functions, similar to Mcl-1, as a selective tBid and Bak antagonist. Oncogene 27:1421-1428. https://doi.org/10.1038/sj.onc.1210771
  24. Song Q, Kuang Y, Dixit VM, Vincenz C (1999) Boo, a novel negative regulator of cell death, interacts with Apaf-1. EMBO J 18:167-178. https://doi.org/10.1093/emboj/18.1.167
  25. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456-1462. https://doi.org/10.1126/science.7878464
  26. Wang P, Yu J, Zhang L (2007) The nuclear function of p53 is required for PUMA-mediated apoptosis induced by DNA damage. Proc Natl Acad Sci USA 104:4054- 4059. https://doi.org/10.1073/pnas.0700020104
  27. Yoon SJ, Kim EY, Kim YS, Lee HS, Kim KH, Bae J, Lee KA (2009) Role of Bcl2-like 10 (Bcl2l10) in Regulating Mouse Oocyte Maturation. Biol Reprod 81:497-506. https://doi.org/10.1095/biolreprod.108.073759
  28. Zhang H, Holzgreve W, De Geyter C (2001) Bcl2-L-10, a novel anti-apoptotic member of the Bcl-2 family, blocks apoptosis in the mitochondria death pathway but not in the death receptor pathway. Hum Mol Genet 10:2329-2339. https://doi.org/10.1093/hmg/10.21.2329
  29. Zou H, Li Y, Liu X, Wang X (1999) An APAF-1. cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274:11549-11556. https://doi.org/10.1074/jbc.274.17.11549