DOI QR코드

DOI QR Code

Multi-Objective Job Scheduling Model Based on NSGA-II for Grid Computing

그리드 컴퓨팅을 위한 NSGA-II 기반 다목적 작업 스케줄링 모델

  • Kim, Sol-Ji (Dept. of Information Management Engineering, Korea University) ;
  • Kim, Tae-Ho (Dept. of Information Management Engineering, Korea University) ;
  • Lee, Hong-Chul (Dept. of Industrial Management Engineering, Korea University)
  • 김솔지 (고려대학교 정보경영공학부) ;
  • 김태호 (고려대학교 정보경영공학부) ;
  • 이홍철 (고려대학교 산업경영공학부)
  • Received : 2011.03.22
  • Accepted : 2011.04.21
  • Published : 2011.07.31

Abstract

Grid computing is a new generation computing technology which organizes virtual high-performance computing system by connecting and sharing geographically distributed heterogeneous resources, and performing large-scaled computing operations. In order to maximize the performance of grid computing, job scheduling is essential which allocates jobs to resources effectively. Many studies have been performed which minimize total completion times, etc. However, resource costs are also important, and through the minimization of resource costs, the overall performance of grid computing and economic efficiency will be improved. So in this paper, we propose a multi-objective job scheduling model considering both time and cost. This model derives from the optimal scheduling solution using NSGA-II, which is a multi objective genetic algorithm, and guarantees the effectiveness of the proposed model by executing experiments with those of existing scheduling models such as Min-Min and Max-Min models. Through experiments, we prove that the proposed scheduling model minimizes time and cost more efficiently than existing scheduling models.

그리드 컴퓨팅은 지리적으로 분산된 이기종의 컴퓨팅 자원들을 상호 연결하고 공유하여 가상의 고성능 컴퓨팅시스템을 구성함으로서 대용량의 컴퓨팅 연산 등을 수행하는 차세대 컴퓨팅 기술이다. 이러한 그리드 컴퓨팅의 성능을 극대화하기 위해서는 효율적으로 작업을 자원에 할당하는 작업 스케줄링 기법이 필요하다. 따라서 작업 총 완료시간 등을 고려한 작업 스케줄링 기법에 대한 많은 연구가 진행되었다. 그러나 작업 스케줄링에 있어서 자원의 사용에 따른 자원 비용을 고려하는 것 역시 매우 중요하며, 자원 비용의 최소화를 통해 그리드 컴퓨팅의 전체적인 성능 및 경제적 효율성을 높일 수 있다. 따라서 본 논문에서는 시간과 비용을 모두 고려한 다목적 작업 스케줄링 모델을 제안한다. 제안하는 모델은 다목적 유전 알고리즘 기법의 하나인 NSGA-II를 적용하여 최적 해를 도출하였고, 모델의 효율성을 증명하기 위해 시뮬레이션 환경을 구성하여 기존의 스케줄링 모델인 Min-Min, Max-Min 알고리즘과의 비교 실험을 수행하였다. 이를 통해 제안한 스케줄링 모델이 기존 스케줄링 모델에 비해 작업 총 완료시간과 자원 비용을 더욱 효율적으로 최소화함을 증명하였다.

Keywords

References

  1. I. Foster, and C. Kesselman, "The Grid: Blueprint for a New Computing Infrastructure," Morgan Kaufmann Publishers, 1998.
  2. Junzhou Luo, Peng Ji, Xiaozhi Wang, Ye Zhu, Feng Li, Teng Ma, and Xiaopeng Wang, "Resource management and task scheduling in grid computing," Proceedings of The 8th International Conference on Computer Supported Cooperative Work in Design, Vol. 2, pp. 431-436, May. 2004.
  3. O. H. Ibarra and C. E. Kim, "Heuristic Algorithm for Scheduling Independent Tasks on Nonidentical Processors," Journal of the ACM, Vol. 24, No. 2, pp. 280-289, Apr. 1977. https://doi.org/10.1145/322003.322011
  4. M. Maheswaran, S. Ali, H. J. Siegal, D. Hensgen, and R. F. Freund, "Dynamic Matching and Scheduling of a Class of Independent Tasks onto Heterogeneous Computing Systems," Proceedings of 8th Heterogeneous Computing Workshop, pp. 30-44, 1999.
  5. L. D. Briceno, M. Oltikar, H. J. Siegel, and A. A. Maciejewski, "Study of an Iterative Technique to Minimize Completion Times of Non-Makespan Machines," Proceedings of 2007 IEEE International Parallel and Distributed Processing Symposium, pp. 1-14, Mar. 2007.
  6. K. Etminani, and M. Naghibzadeh, "A Min-Min Max-Min selective algorithm for grid task scheduling," Proceedings of the 3rd IEEE/IFIP International Conference in Central Asia on Internet, pp. 1-7, Sep. 2007.
  7. M. Y. Wu, W. Shu, and H. Zhang, "Segmented Min-Min: A Static Mapping Algorithm for Meta-Tasks on Heterogeneous Computing Systems," 9th IEEE Heterogeneous Computing Workshop, pp. 375-385, May. 2000.
  8. He XiaoShan, Sun XianHe, and Gregor von Las zewski, "QoS Guided Min-Min Heuristic for Grid Task Scheduling," Journal of Computer Science and Technology, Vol. 18, No. 4, pp. 442-451, July. 2003. https://doi.org/10.1007/BF02948918
  9. Z. Xu, X. Hou, and J. Sun, "Ant algorithm-based task scheduling in grid computing," Proceedings of 2003 IEEE Canadian Conference on Electrical and Computer Engineering, pp. 1107-1110, 2003.
  10. S. Fidanova, "Simulated Annealing for Grid Sched uling Problem," Proceedings of the IEEE John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA'06), pp. 41-45, 2006.
  11. J. Andersson, "A survey of multiobjective optimization in engineering design," Reports of the Department of Mechanical Engineering, LiTH-IKP-R-1097, Linkoping University, Linkoping, 2000.
  12. Kim Yeo Geun, Yun Bok Sik, Lee Sang Bock, "Meta Heuristics," Young-Ji Books, pp. 3-150, 1997.
  13. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, pp. 182-197, Apr. 2002. https://doi.org/10.1109/4235.996017
  14. S. T. Khu, and H. Madsen, "Multi-objective calibration with Pareto preference ordering: An application to rainfall-runoff model calibration," Water Resources Research, Vol. 41, No. 3, Mar. 2005.
  15. JMetal, http://jmetal.sourceforge.net
  16. GridSim, http://www.gridbus.org/gridsim
  17. R. Buyya, and M. Murshed, "GridSim: A Toolkit for the Modeling and Simulation of Distributed Resource Management and Scheduling for Grid Computing," The Journal of Concurrency and Computation: Practice and Experience, Vol. 14, No. 13-15, pp. 1175-1220, 2002. https://doi.org/10.1002/cpe.710
  18. WWG testbed, http://www.buyya.com/ecogrid/wwg