Compression Behavior of Steel Plate-Concrete Structures with the Width-to-Thickness Ratio

폭두께비에 따른 강판콘크리트구조의 압축거동

  • Received : 2010.10.27
  • Accepted : 2011.04.05
  • Published : 2011.04.27

Abstract

This study was conducted to understand the characteristics of the compression behavior of steel plate-concrete(SC) structures with a width-to-thickness ratio under axial loading. SC structures are structural systems where concrete is poured into steel plates to which headed stud bolts had been attached inside. The specimens were classified according to the two width-to-thickness (W/T) ratios of 1.60 and 3.56. Through these experiments, the following conclusions could be arrived at. The fracture pattern of the specimens showed that steel plate buckling occurred between the stud lines, and that a crack occurred at the concrete spalling from the sides of the concrete before the system reached the maximum compressive strength. The maximum compressive strength of the specimens was larger than that of the existing equations (AISC 2005, ACI 318-05, and KBC 2005). With the increased W/T ratio of the specimens, the strength of the concrete core was decreased to account for the confinement effects from the steel plates.

본 연구는 폭두께비(W/T)에 따른 중심압축하중을 받는 SC(Steel Plate-Concrete)구조의 압축거동 특성을 파악하는 것이 주목적이다. SC구조는 전단 연결재를 갖는 샌드위치 강판 사이에 콘크리트를 타설하여 시공하는 구조이다. SC구조의 실험체는 폭두께비(W/T)가 1.60와 3.56인 실험체로 구분하였다. 실험을 통하여 다음과 같은 결과를 얻었다. SC구조 실험체의 파괴양상은 최대압축강도에 도달하기 전에 스터드와 스터드 사이 강판이 국부좌굴하고 콘크리트는 일부 균열 및 박리현상이 나타났다. 또한 SC구조 실험체의 최대압축강도는 기존 설계기준식(AISC 2005, ACI318-05 및 KBC 2005)에 의한 압축강도보다 거의 크게 나타났다. SC구조 실험체의 폭두께비(W/T)가 증가할수록 강판에 의한 SC구조 실험체의 콘크리트 구속효과는 감소하는 것으로 나타났다.

Keywords

References

  1. 대한건축학회 (2005) 건설교통부 고시 건축구조설계기준.
  2. 서정환, 양영성 (2001) Data Base에 의한 CFT 기둥의 내력에 관한 연구, 한국강구조학회논문집, 한국강구조학회, 제13권, 제1호, pp.71-78.
  3. 이명재 (2008) SM570TMC강을 이용한 콘크리트충전강관 합성기둥의 설계기준 항복강도, 한국강구조학회논문집, 한국강구조학회, 제20권, 제1호, pp.205-213.
  4. 이승조, 박정민, 김화중 (2002) 중심압축을 받는 고강도콘크리트 충전각형강관 기둥의 내력특성, 대한건축학회논문집 구조계, 대한건축학회, 제18권, 제7호, pp.11-18.
  5. 최병정, 한홍수, 한권규, 이승준 (2009) 리브 보강 유무에 따른 강판-콘크리트 구조의 압축거동, 한국강구조학회논문집, 한국강구조학회, 제21권, 제5호, pp.471-481.
  6. 최병정, 한홍수, 김원기, 이승준, 김우범 (2008) 스터드 간격과 강판두께의 비를 변수로 한 비보강 강판-콘크리트 구조의 압축실험, 한국강구조학회논문집, 한국강구조학회, 제20권, 제4호, pp.561-570.
  7. 한국강구조학회(2006) 강구조의 설계, 구미서관.
  8. 황원섭, 김동조 (2002) 콘크리트 구속효과를 고려한 정사각형 CFT단주의 강도,한국강구조학회논문집, 한국강구조학회, 제14권, 제6호, pp.813-822.
  9. 神地 正紀,北野 剛人,菅原 良次,平川 啓司(1996), 鋼板コンクリート構造に關する實験的研究 その 2 圧縮特性實験(1),日本建築學會學術講演梗概集,日本建築學會, pp.1071-1072.
  10. 宮内 靖昌, 尾崎 昌彦, 東端 泰夫, 荻原 みき, 宇佐美 徹(1996), 鋼板コンクリート構造に關する實験的研究 その3 圧縮特性實験(2), 日本建築學會學術講演梗概集, 日本建築學會, pp.1073-1074.
  11. ACI (2005) Building Code Requirements for Structural Concrete(ACI 318-05) and Commentary (ACI 318R-05).
  12. AISC (2005) Specification for Structural Steel Buildings.
  13. Corus(2003) Bi-Steel: Design & Construction Guide.
  14. Liu, D. (2005) Tests on high-strength rectangular concrete-filled steel hollow section stub columns, Journal of Constructional Steel Research, pp.902-911.
  15. Lue, D.M., Liu, J.L., and Yen, T.( 2007) Experimental study on rectangular CFT columns with high-strength concrete, Journal of Constructional Steel Research, pp.37-44.
  16. Tao, Z., Han, L.H., and Wang, D.Y.(2008) Strength andductility of stiffened thin-walled hollow steel structural stub columns filled with concrete, Thin-Walled Structures,pp.1113-1128.