Explicit Stress-Erection and Ultimate Load Analysis of Unit STRARCH Frame Considering Geometrically and Materially Nonlinear Characteristics

기하학적 재료적 비선형 특성을 고려한 스트라치 단위부재의 명시적 긴장설치 및 극한하중 해석

  • Received : 2011.03.28
  • Accepted : 2011.08.05
  • Published : 2011.08.27

Abstract

In this study, the explicit numerical algorithm was proposed to simulate the stress erection process and ultimate-load analysis of the strarch (stressed arch) system. The strarch system is a unique and innovative structural system and member prestress comprising prefabricated plane truss frames erected through a post-tensioning stress erection procedure. The flexible bottom chord, which has sleeve and gap details, is closed by the reaction force of the prestressing tendon. The prestress imposed on the tendon will enable the strarch system to be erected. This post-tensioning process is called "stress erection process." During this process, plastic rigid-body rotation occurs to the flexible top chord due to the excessive amount of plastic strain, and the structural characteristic is unstable. In this study, the dynamic relaxation method (DRM) was adopted to calculate the nonlinear equilibrium equation of the system, and a displacement-based finite-element-formulated filament beam element was used to simulate the nonlinear behavior of the top chord sections of the strarch system. The section of the filament beam element was composed by the amount of filaments, which can be modeled by various material models. The Ramberg-Osgood and bilinear kinematic elastic plastic material models were formulated for the nonlinear material behaviors of the filaments. The numerical results that were obtained in the present study were compared with the experiment results of the stress erection and with the results of the ultimate-load analysis of the strarch unit frame. The results of the present studies are in good agreement with the previous experiment results, and the explicit DRM enabled the analysis of the post-buckling behaviors of the strarch unit frame.

본 연구에서는 스트라치 시스템의 긴장설치과정 및 극한하중 해석을 수행하기 위한 명시적 해석법을 제안하였다. 스트라치 시스템은 Stressed-Arch에서 유래한 용어로 슬리브와 갭이 도입된 유동하현재 내부의 긴장재에 초기장력을 도입함으로써 갭이 점차 닫히게 되며, 이에 따라 상현재에 곡률이 도입되면서 전체 구조물이 상승하여, 최종적인 아치형태의 구조물을 형성하는 독창적인 구조시스템이다. 스트라치 시스템의 초기장력 도입과정을 긴장설치(stress-erection) 과정이라 하며, 초기곡률의 도입에 따라 유동 상현재에는 과도한 초기변형이 발생하여 소성거동에 의한 강체회전이 발생하는 불안정 구조물이 된다. 본 연구에서는 이러한 스트라치 시스템의 불안정 거동특성을 해석하기 위해서 강성행렬을 사용하지 않는 명시적 동적이완법을 사용하여 비선형 평형방정식의 해를 구하였고, 대변위 및 단면의 재료적 특성을 반영할 수 있는 필라맨트 보요소를 사용하여 연속된 상현재의 비선형 거동특성을 분석하였다. 필라맨트 보요소의 단면은 다수의 1차원 필라맨트로 구성되며, 각각의 필라맨트에 대해서 다양한 재료모델을 적용할 수 있다. 본 연구에서는 비선형 재료모델인 Ramberg-Osgood모델 및 Bi-linear 탄소성 모델을 적용하여 긴장설치 및 극한하중 해석을 수행하였고, 그 결과를 이전의 실험적 연구결과와 비교 분석하였다. 본 연구의 해석결과는 이전의 실험적 연구결과와 유사하였으며, 명시적 해석법의 특성상 효율적으로 후좌굴거동 특성까지 해석할 수 있었다.

Keywords

References

  1. 한상을, 이진섭, 김종범, 윤종현(2001) Stressed-Arch 시스템의 구조성능에 관한 연구, 대한건축학회 논문집 구조계, 대한건축학회, 제17권, 제12호, pp.107-115.
  2. Chan, E.C. (1982) Nonlinear geometric, material and time dependent analysis of reinforced concrete shells with edge beams, Report UCB-SESM 82/8, University of California at Berkeley.
  3. Clarke, M.J. and Hancock, G.J. (1990) A Study of Incremental-Iterative Strategies for Nonlinear Analyses, International Journal for Numerical Methods in Engineering, Vol. 29, pp.1365-1391. https://doi.org/10.1002/nme.1620290702
  4. Clarke, M.J. and Hancock, G.J. (1991) Finite Element Nonlinear Analysis of Stressed Arch Frames, Journal of Structural Engineering, ASCE, Vol. 117, No. 10, pp.2819-2837. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:10(2819)
  5. Clarke, M.J. and Hancock, G.J. (1994) The Behaviour and Design of Stressed-Arch(Strarch) Frames, Proc. of IASS-ASCE International Symposium, Atlanta: Spatial, Lattice and Tension Structure, pp.200-209.
  6. Han, S.E. and Lee, K.S. (2003) A Study of the Stabilizing Process of Unstable Structures, Computers & Structures, Vol. 81, pp.1677-1688. https://doi.org/10.1016/S0045-7949(03)00187-1
  7. Key, P.W., Chiew, S.P., and Tai, T.Y. (1994) Design and Construction ofa Long-Span Stressed Arch Hangar in Singapore, Steel Structures, Journal of Singapore Structural Steel Society, Vol. 5, No. 1, pp.25-36.
  8. Lee, K.S., Han, S.E., and Park, T.H. (2011) A simple explicit arc-length method using the dynamic relaxation method with kinetic damping, Computers & Structures, Vol. 89, pp.216-233. https://doi.org/10.1016/j.compstruc.2010.09.006
  9. Lee, K.S. and Han, S.E. (2011) Semi-rigid Elasto Plastic Post Buckling Analysis a Space Frame with Finite Rotation, International Journal of Advanced Steel Construction, to be published.
  10. Lin, S.S. (1997) Use of Filamented Beam Elements for Bored Pile Analysis, Journal of Structural Engineering, ASCE, Vol. 123, No. 9, pp.1236-1244. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:9(1236)
  11. Mari, A.R. (1984) Nonlinear geometric, materialand time dependent analysis of three dimensional reinforced and prestressed concrete frames. Report UCB-SESM-84/12. University of California at Berkeley.
  12. Mari, A.R. (2000) Numerical simulation of the segmental construction of three dimensional concrete frames. Engineering Structures, Vol. 22, pp.585-596. https://doi.org/10.1016/S0141-0296(99)00009-7
  13. Mari, A.R., Bairan, J.M., and Duarte, N. (2010) Long-term deflections in cracked reinforced concrete flexural members, Engineering Structures, Vol.32, pp.829-842. https://doi.org/10.1016/j.engstruct.2009.12.009
  14. STRARCH Int. LTD. (1992) Strarch Fabrication & Construction Manual(AmSTRARCH).
  15. STRARCH Int. LTD. (1999) Strarch Design Manual(DM02 V2.0).
  16. STRARCH Int. LTD. (1999) MicroSTRARCH Users Manual(MSUM01, V1.1).