대체전단변형률 장을 갖는 8, 9절점 평면 쉘요소를 이용한 곡선 보강 복부판의 좌굴해석

Buckling Analysis of Curved Stiffened Web Plate using Eight and Nine-Node Flat Shell Element with Substitute Shear Strain Field

  • 투고 : 2011.03.17
  • 심사 : 2011.05.17
  • 발행 : 2011.08.27

초록

본 논문에서는 곡선 보강 복부판의 좌굴해석을 대체전단변형률 장을 갖는 8, 9절점 평면 쉘요소를 이용한 유한요소해석을 통하여 수행하였다. 수평보강재 및 수직보강재를 갖는 경우의 수직면내 곡선 복부판의 좌굴거동을 조사하기 위해 면내 모멘트 하중을 받는 경우에 대해서 복부판의 폭(b)의 변화, 보강재와 복부판의 휨-강성비(${\gamma}=EI/bD$)의 변화에 대한 변수연구를 수행하였다. 보강재를 갖지 않는 경우의 수직면내 곡선 복부판의 정적거동에 대해서도 조사되었다. 또한 모멘트 하중을 받는 경우에서 수평 보강재 및 수직 보강재의 좌굴능력이 비교 되었다.

In this study, the buckling analysis of the vertically curved stiffened web plate was conducted through finite-element analysis, using an eight- and nine-node flat shell element with a substitute shear strain field. To investigate the buckling behavior of the vertically curved web plate with a longitudinal or vertical stiffener under in-plane moment loading, parametric studies were conducted for the variation of the width (b) and ratio of the bending stiffness of the stiffener to that of the plate (${\gamma}=EI/bD$). The static behavior of the vertically curved web plate without a stiffener was also investigated, and then the buckling abilities of the longitudinal and vertical stiffeners were compared under moment loading.

키워드

참고문헌

  1. 박대용, 박종면, 유성근, 장석윤(2004) 복합적층판 해석을 위한 대체변형률 장을 갖는 8,9절점 Reissner-Mindlin 판 요소, 대한토목학회 논문집, 대한토목학회, 제24권, 제2호, pp.335-344.
  2. Aghdam, M.M., Mohammadi, M., and Erfanian, V. (2007) Bending analysis of thin annular sector plates using extended Kantorovich method, Thin-Walled Structure, Vol. 45, pp.983-990. https://doi.org/10.1016/j.tws.2007.07.012
  3. Altman, W. and Neto, E.L. (1989) Stability of annular sectors and plates subjected to follower loads based on a mixed finite element formulation, Computer Structures, Vol. 31, pp.833-840. https://doi.org/10.1016/0045-7949(89)90269-1
  4. Davidson, J.S., BalanceS, R., and Yoo, C.H. (2000) Behavior of curved I-girder webs subjected to combined bending and shear, Journal of Bridge Engineering, ASCE, Vol. 5, No. 2, pp.165-170. https://doi.org/10.1061/(ASCE)1084-0702(2000)5:2(165)
  5. Donea, J. and Lamain, G. (1987) A modified representation of transverse shear in C0 quadrilateral plate elements, Computer Methods in Applied Mechanics. Engineering, Vol. 63, pp.183-207. https://doi.org/10.1016/0045-7825(87)90171-X
  6. Harik, I.E. (1985) Stability of annular sector plates with clamped radial edges, Journal of Applied Mechanics, Vol. 52, pp.971-972. https://doi.org/10.1115/1.3169177
  7. Hughes, T.J.R., Taylor, R.L., and Worsak, K.N. (1977) A simple and efficient finite element for plate bending, International Journal of .Numerical Method, Vol. 11, pp.1529-1543. https://doi.org/10.1002/nme.1620111005
  8. Jomehzadeh, E., Saidi, A.R., and Atashipour, S.R. (2009) An analytical approach for stress analysis of functionally graded annular sector plates, Materials Design, Vol. 30, pp.3679-3685. https://doi.org/10.1016/j.matdes.2009.02.011
  9. Jomehzadeh, E. and Saidi, A.R. (2009) Analytical solution for free vibration of transversely isotropic sector plates using a boundary layer function, Thin-Walled Structures, Vol. 47, pp.82-88. https://doi.org/10.1016/j.tws.2008.05.004
  10. Liew, K.M., Xiang, Y., and Kitipornchai, S. (1996) Analytical buckling solutions for Mindlin plates involving free edges, International Journal of Mechanics, Vol. 38, pp.1127-1138. https://doi.org/10.1016/0020-7403(95)00108-5
  11. Liew, J.Y.R., Thevendran, V., Shanmugam, N.E., and Tan, L.O. (1995) Behavior and design of horizontally curved steel beams, Journal of Constructional Steel Research, Vol. 32, pp.37-67. https://doi.org/10.1016/0143-974X(94)00011-6
  12. Liu, W.H. and Chen, W.C. (1989) Note on the stability of annular sector plates with elastically restrained edges, International Journal of Mechanics Science, Vol. 31, pp.611-622. https://doi.org/10.1016/0020-7403(89)90068-4
  13. Mohammadi, M.., Saidi, A.R., and Jomehzadeh, E. (2010) Levy solution for buckling analysis of functionally graded rectangular plates, Applied Composite Materials, Vol. 17, pp.81-93. https://doi.org/10.1007/s10443-009-9100-z
  14. Nie, G.J. and Zhong, Z. (2008) Vibration analysis of functionally graded annular sectorial plates with simply supported raidial edges, Composites Structures, Vol. 84, pp.167-176. https://doi.org/10.1016/j.compstruct.2007.07.003
  15. Rubin, C. (1978) Stability of polar orthotropic sector plates, Journal of Applied Mechanics, Vol. 45, pp.448-450. https://doi.org/10.1115/1.3424329
  16. Sahraee, S. (2009) Bending analysis of functionally graded sectorial plates using Levinson plate theory, Composite Structures, Vol. 88, pp.548-557. https://doi.org/10.1016/j.compstruct.2008.05.014
  17. Sharma, A. and Sharda, H.B. (2005) Stability and vibration of Mindlin sector plates: an analytical approach, AIAA, Vol. 43, pp.1109-1115. https://doi.org/10.2514/1.4683
  18. Sharma, A., Sharda, H.B., and Nath, Y. (2005) Stability and vibration of thick laminated composite sectior plates, Journal of Sound Vibration, Vol. 287, pp.1-23. https://doi.org/10.1016/j.jsv.2004.10.030
  19. Shanmugam, N.E., Mahendrakumar, M., and Thevendran, V. (2003) Ultimate load behaviour of horizontally curved plate girders, Journal of Constructional Steel Research, Vol. 59, pp.509-529. https://doi.org/10.1016/S0143-974X(02)00043-3
  20. Srinivasan, R.S. and Thiruvenkatacharit, V. (1984) Stability of annualr sector plates with variable thickness, AIAA, Vol. 22, pp.315-317. https://doi.org/10.2514/3.8392
  21. Timoshenko S.P. and Gere J.M. (1961) Theory of elastic stability, McGraw-Hill, New York.
  22. Wang, C.M. and Xiang, Y. (1999) Deducing buckling loads of sectorial Mindlin plates from Kirchhoff plates, Journal of Engineering Mechanics, Vol. 125, pp.596-598. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:5(596)
  23. Xanthakos and Petros, P. (1994) Theory and design of bridges, John Wiely & Sons, Inc., New York.
  24. Zhou, Y.H., Zheng, X., and Harik, E. (1995) A semi numerical method for buckling of sector plates, Computer Structures, Vol. 57, pp.847-854. https://doi.org/10.1016/0045-7949(95)00084-T