Semi-rigid Elasto-Plastic Post Buckling Analysis of Space Frame by Using the Explicit Arc-Length Method

명시적 호장법을 이용한 공간프레임의 반강접 탄소성 후좌굴 해석

  • Received : 2011.04.04
  • Accepted : 2011.10.11
  • Published : 2011.10.27

Abstract

In this paper, semi-rigid elasto-plastic post-buckling analysis of a space frame was performed using various explicit arc-length methods. Various explicit arc-length methodsand a large-deformation and small-strain elasto-plastic 3D space frame element with semi-rigid connections and plastic hinges were developed. This element can be appliedto both explicit and implicit numerical algorithms. In this study, the Dynamic Relaxation method was adopted in the predictor and corrector processesto formulate an explicit arc-length algorithm. The developed "explicit-predictor" or "explicit-corrector" were used in the elasto-plastic post-buckling analysis. The Eulerian equations for a beam-column with finite rotation, which considers the bowing effects, were adopted for the elastic system and extended to theinelastic system with a plastic hinge concept. The derived tangent stiffness matrix was asymmetrical due to the finite rotation. The joint connection elements were introduced for semi-rigidity using a static condensation technique. Semi-rigid elasto-plastic post-buckling analyses were carried out to demonstrate the potential of the developed explicit arc-length method and advanced space frame element in terms of accuracy and efficiency.

본 연구에서는 다양한 명시적 호장법을 사용하여 공간프레임의 반강접 탄소성 후좌굴 해석을 수행하였다. 이를 위해 이전 연구를 발전시켜 다양한 명시적 알고리즘의 호장법과 명시적, 묵시적 해석법에 동시에 적용 가능한 반강접 탄소성 공간프레임요소를 제안하였다. 다양한 명시적 호장법은 예측단계와 수렴단계에 명시적 해석법인 동적이완법을 적용한 것을 의미한다. 따라서 명시적 호장법에는 명시적(예측단계)-명시적(예측단계) 호장법, 명시적(예측단계)-묵시적(수렴단계) 호장법, 묵시적(예측단계)-명시적(수렴단계) 호장법으로 구분된다. 또한 명시적 호장법에 적용 가능하도록 수정된 반강접 탄소성 공간프레임요소는 오일러리안 유한변형이론에 의해 강체회전변형을 고려하였기 때문에 대변위가 발생하는 기하학적 비선형 문제에 적용될 수 있고, 완전 탄소성 소성힌지 알고리즘에 의한 재료적 비선형성을 고려하였으며, 부재내부에 정적 응축된 회전 및 축방향 성분의 선형 스프링에 의해 접합부 반강접 특성을 반영하였다. 제안된 해석법을 이용하여 검증예제를 수행함으로써 본 연구에서 제안된 다양한 명시적 호장법 및 공간프레임요소의 정확성을 검증한다.

Keywords

References

  1. 김문영, 노범준, 정성엽(1996) 공간뼈대 구조물의 대변형 및 탄소성 유한요소해석,1996년도 한국강구조학회 학술발표대회 논문집, 한국강구조학회, pp.157-168.
  2. 한상을, 이경수, 이상진(1999) 동적이완법에 의한 불안정 구조물의 안정화이행과정 해석에 관한 연구. 한국강구조학회지, 한국강구조학회, 제11권, 제6호, pp.591-602
  3. 이경수, 한상을(2009) 공간구조물의 분기좌굴해석을 위한 수치해석 이론개발, 한국강구조학회 논문집, 한국강구조학회, 제21권, 제6호, pp.563-574.
  4. 이경수, 한상을(2009) 유한변형과 접합특성을 고려한 공간프레임의 대변형 탄소성 해석, 한국강구조학회 논문집, 한국강구조학회, 제21권, 제6호, pp.597-608.
  5. 加藤史郎 (1997) 單層ラチスドームの座屈に關する硏究成果の報告,ラチス構造の彈遡性座屈解析法 の基礎, 符籙1, 豊橋技術科學大學建設工學系構造工學講座.
  6. Abbasnia, R. and Kassimali, A. (1995) Large Deformation Elastic-plastic Analysis of Space Frames, J. Construct. Steel Research, Vol.35, pp.275-290. https://doi.org/10.1016/0143-974X(95)00008-J
  7. Argyris, J.H., Boni, B., Hindenlang, U., and Kleiber, M. (1982) Finite element analysis of two and three dimensional elasto-plasic frames-the natural approach, Comput. Meths. Appl. Mech. Engrg. Vol.35, pp.221 248 https://doi.org/10.1016/0045-7825(82)90135-9
  8. Batoz, J.L. and Dhatt, G. (1979) Incremental displacement algorithm for nonlinear problems, Int. J. Num. Meth. Eng. Vol.14, pp.1262-1266. https://doi.org/10.1002/nme.1620140811
  9. Chen, W.F., Goto, Y., and Liew, J.Y.R. (1996) Stability Design of Semi-Rigid Frames, John Willey& Sons, Inc.
  10. Cheng, H. and Gupta, K.C. (1989) An historical note on finite rotations, J. Applied Mechanics, Vol. 56, pp.139-145. https://doi.org/10.1115/1.3176034
  11. Crisfield. M.S. (1981) A fast incremental iterative solution procedure that handles 'snap through', Computer & Structures, Vol.13, pp.55-62. https://doi.org/10.1016/0045-7949(81)90108-5
  12. Crisfield, M.A. (1997) Nonlinear finite element analysis of solids and structures, Vol.2, Advanced Topics, John Wiley & Sons.
  13. Euler, L. (1775) Formulae Generales pro Trans latione Quacunque Corporum Rigiddrum, Novi Commentari Acad. Imp. Petrop., Vol.20, pp.189-207.
  14. Goldstein, H. (1980) Classical Mechanics, Addison-Wesle
  15. Han, S.E. and Lee, K.S. (2003) A Study of the Stabilizing Process of Unstable Structures, Computers & Structures, Vol.81, pp.1677-1688. https://doi.org/10.1016/S0045-7949(03)00187-1
  16. Kato, S., Mutoh, I., and Shomura, M. (1998) Collapse of semi-rigidly jointed reticulated domes with initial geometric imperfections, J. Construct. Steel Research, Vol.48, pp.145-168. https://doi.org/10.1016/S0143-974X(98)00199-0
  17. Kato, S., Kim, J.M., and Cheong, M. (2003) A new proportioning method for member sections of single layer reticulated domes subjected to uniform and nonuniform loadings, Engineering Structures, Vol.25, pp.1265-1278. https://doi.org/10.1016/S0141-0296(03)00077-4
  18. Kassimali, A. and Abbasnia, R. (1991) Large deformation analysis of elastic space frames, J. Struc. Eng. ASCE, Vol.117(7), pp.2067-2087.
  19. Kondoh, K. and Atluri, S.N. (1986) Simplified Finite Element Method for Large Deformation, Post-Buckling Analysis of Large Frame Structures, Using Explicitly Derived Tangent Stiffness Matrices, Int. J. Num. Meth. Eng. Vol.23(1), pp.69-90. https://doi.org/10.1002/nme.1620230107
  20. Lee, K.S., Han, S.E., and Park, T.H. (2011) A simple explicit arc-length method using the dynamic relaxation method with kinetic damping, Computers & Structures, Vol.89, pp.216-233. https://doi.org/10.1016/j.compstruc.2010.09.006
  21. Lee, K.S. and Han, S.E. (2011) Semi-rigid Elasto Plastic Post Buckling Analysis a Space Frame with Finite Rotation, International Journal of Advanced Steel Construction, Vol. 7(3), pp.275-303.
  22. Levy, R. and Spillers, W.R. (2003) Analysis of Geometrically Nonlinear Structures, Second Edition, Kluwer Academic Publishers
  23. Liew, J.Y.R., Chen, H., Shanmugam, N.E., and Chen W.F. (2000) Improved nonlinear plastic hinge analysis of space frame structures, Engineering Structures, Vol.22, pp.1324-1338. https://doi.org/10.1016/S0141-0296(99)00085-1
  24. Meek, J.L. and Tan, H.S. (1984) Geometrically Nonlinear Analysis of Space Frames by an Incremental Iterative Technique, Comput. Meths. Appl. Mech. Engrg., Vol.47. pp.261-282. https://doi.org/10.1016/0045-7825(84)90079-3
  25. Nee, K.M. and Haldar, A. (1988) Elastoplastic Nonlinear Post-Buckling Analysis of Partially Restrained Space Structures, Comput. Meths. Appl. Mech. Engrg., Vol.71. pp.69-97. https://doi.org/10.1016/0045-7825(88)90096-5
  26. Papadrakakis, M. (1981) Post Buckling Analysis of Spatial Structures by Vector Iteration Methods, Computer & Structure, Vol.14. pp.393-402. https://doi.org/10.1016/0045-7949(81)90059-6
  27. Ramm, E. (1981) Strategies for tracing thenonlinear response near limit points, in : W. Wunderlich, E. Stein and K.J. Bathe, eds., Nonlinear Finite Element Analysis in Structural Mechanics. Springer, pp.63-89.
  28. Riks, E. (1979) An incremental approach to the solution of snapping and buckling problems, International Journal of Solids and Structures, Vol.15, pp.529-551. https://doi.org/10.1016/0020-7683(79)90081-7
  29. Spiller, W.R. (1990) Geometric stiffness matrix forspace frames, Computers & Structures, Vol. 36(1), pp.29-37. https://doi.org/10.1016/0045-7949(90)90171-W
  30. Williams, F.W.(1964) An approach to the nonlinear behavior of the members of a rigid jointed plane frames work with finite deflections, J. Mech. Appl. Math. Vol. 17, pp.451-469. https://doi.org/10.1093/qjmam/17.4.451
  31. Shi, G. and Atluri, S.N. (1988) Elasto-plastic large deformation analysis ofspace-frames: a plastichinge and stress-based explicit derivation of tagent stiffness, Int. J. Num. Meth. Eng. Vol. 26, pp.589-615. https://doi.org/10.1002/nme.1620260306
  32. Wood, R.D. and Zienkiewicz, O.C. (1977) Geometrically non-linear finite element analysis of beam, frames, arches and axisymmetric shells, Computers & Structures, Vol.7, pp.725-735. https://doi.org/10.1016/0045-7949(77)90027-X