DOI QR코드

DOI QR Code

Architecture and Server Selection for DHT-based Distributed CDN

해시 테이블 기반 분산형 CDN 구조 및 서버 선택 방안

  • 정종해 (한국항공대학교 통신공학과) ;
  • 오건영 (한국항공대학교 통신공학과) ;
  • 이남경 (한국전자통신연구원) ;
  • 윤장우 (UST 광대역네트워크공학) ;
  • 이현우 (한국전자통신연구원 스마트스크린융합연구팀) ;
  • 류원 (한국전자통신연구원 스마트스크린 융합연구부) ;
  • 이성창 (한국항공대학교 항공전자 및 정보통신공학부)
  • Received : 2011.08.31
  • Accepted : 2011.10.14
  • Published : 2011.10.31

Abstract

In centralize CDN systems, the content server selection is performed by service node for every user request, and the selected node is notified to the user. In this paper, we present distributed CDN architecture and algorithm in which the request from a user is delivered to the content source by a P2P algorithm utilizing DHT(distributed hash table) through the overlay network and the user selects one of the source nodes based on real-time user-centric criteria. For this purpose, we propose a modified Pastry algorithm for contents registration, search and selection, in addition to the distributed architecture. The proposed architecture has the advantages of load balancing, traffic balancing, scalability, fault-tolerance due to the self-configuration, self-healing attributes of distributed architecture. Various simulation shows the feasibility of the proposed architecture and algorithm, and the performance is compared and discussed for the variations of the proposed scheme.

중앙집중형 CDN에서는 사용자의 요청에 대해 서비스 망의 노드가 가용한 소스 노드들 중에서 하나를 선택하여 사용자에게 알려준다. 본 논문에서는, 사용자 요청이 오버레이 망에서 DHT(distributed hash table)를 이용한 P2P 알고리듬에 의해 컨텐츠 소스들에게 전달되고, 이 소스들로부터 받은 응답들을 바탕으로 사용자가 실시간 사용자 중심의 선택을 하는 분산형 CDN 구조 및 동작 알고리듬을 제안한다. 이를 위해 분산형 CDN 구조와 함께 수정된 Pastry 방식을 제안하고, 이를 이용한 컨텐츠의 등록, 검색, 선택을 방안을 기술 하였다. 제안한 CDN 구조는 분산형 구조가 갖는 부하 분산, 트래픽 분산, 확장성, 자가 구성 및 자가 회복에 의한 장애에 대한 관용성 등의 장점도 가진다. 다양한 시뮬레이션을 통하여 제안한 방안의 유효성을 보였으며, 제안한 방안의 여러 가지 변형 방안에 대한 성능을 비교, 검토하였다.

Keywords

References

  1. Bjurefors, F., Larzon, L.A., and Gold, R., "Performance of Pastry in a heterogeneous system," Peer-to-Peer Computing Proceedings, Fourth International Conference, 25-27 Aug. 2004
  2. Swart, G., "Spreading the load using consistent hashing: a preliminary report," Models and Tools for Parallel Computing on Heterogeneous Networks, Third
  3. G. Pierre and M. van Steen. "Globule: A collaborative content delivery network", IEEE Communications Magazine, pages 127-133, August 2006.
  4. J. Coppens et al., "Design and performance of a self organizing adaptive content distribution network", IEEE/IFIP Network Operations Management Symposium 2006, Vancouver, Canada, April 2006.
  5. H. J. Mulerikkal, et al., "An Architecture for Distributed Content Delivery Network", IEEE 2007.
  6. ITU-T Rec. Y.2019 "Content delivery functional architecture in NGN" (2010.09)
  7. ITU-T Rec. Y.1902 "Framework for multicast based IPTV content delivery" (2011.04)
  8. IETF 80, cdni BoF (2011.03)
  9. A. Guyton and M. Schwartz, "Locating nearby copies of replicated internet servers," in Proc. ACM SIGCOMM, August 1995, pp. 288-298.
  10. R. L. Carter and M. E. Crovella, "Server selection using dynamic path characterization in wide-area networks," in Proc. IEEE INFOCOM, April 1997, pp. 1014-1021.
  11. S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang, "On the placement of internet instrumentation," in Proc. IEEE INFOCOM, March 2000, pp. 295-304.
  12. S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, "Topologicallyaware overlay construction and server selection," in Proc. IEEE INFOCOM, June 2002, pp. 1190-1199.
  13. M. Sayal, Y. Breitbart, P. Scheuermann, and R. Vingralek, "Selection algorithms for replicated web servers," ACM SIGMETRICS Performance Evaluation Review, vol. 26, no. 3, pp. 44-50, 1998. https://doi.org/10.1145/306225.306238
  14. S. G. Dykes, K. A. Robbins, and C. L. Jeffery, "Empirical evaluation of client-side server selection algorithms," in Proc. IEEE INFOCOM, March 2000, pp. 1361-1370.
  15. K. M. Hanna, N. Natarajan, and B. N. Levine, "Evaluation of a novel two-step server selection metric," in Proc. IEEE International Conference on Network Protocols (ICNP), November 2001, pp. 290-300.
  16. S. Naoto, K, Wataru, W Hiroshi, "A Novel Content Distribution Architecture Utilizing Network Distance Prediction", Waseda University, Tokyo, Japan, 2003.
  17. M. Malli, C. Barakat, W. Dabbous, "An Efficient Approach for Content Delivery in Overlay Networks", CCNC'05, 2005.
  18. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content addressable network. In Proceedings of ACM SIGCOMM 2001, 2001.
  19. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet applications. In Proceedings of the 2001 Conference on applications, technologies, architectures, and protocols for computer communications. ACM Press New York, NY, USA, 2001.
  20. B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica. Load balancing in dynamic structured P2P systems. In Proc. IEEE INFOCOM, Hong Kong, 2004.
  21. Rowstron, P. Druschel, "Pastry: Scalable, Distributed Object Location and Routing for Large-scale Peer-to-Peer Systems", in IFIP/ACM Int'l Conf. on Distr. Systems Platforms(Middleware) 2001, pp.329-350, 2001.
  22. A. Varga. Omnet++ community site. [Online]. Avalaible:http://www.omnetpp.org/
  23. Thomas Gamer, Michael Scharf, "Realistic Simulation Environments for IP-based Networks" , OMNeT++ 2008, March 3, 2008, Marseille, France
  24. INET Framework. http://www.omnetpp.org/pmwik/index.php?n=Main. INETFramework, Sept. 2007.
  25. I. Baumgart, B. Heep, and S. Krause, "OverSim: A Flexible Overlay Network Simulation Framework", Proceedings of 10th IEEE Global Internet Symposium (GI '07) in conjunction with IEEE INFOCOM 2007, Anchorage, AK, USA, May 2007.