DOI QR코드

DOI QR Code

Serovars distribution and antimicrobial resistance patterns of Salmonella spp. isolated from the swine farms and slaughter houses

  • Accepted : 2011.04.14
  • Published : 2011.06.30

Abstract

Salmonella spp. is an important pathogen to both public and swine industry. The aim of this study was to investigate the distribution of Salmonella serovar and antibiotics susceptibility of the isolates from Korean swine producing systems. A total of 63 (5.28%) Salmonella spp. was isolated from 1,194 samples (977 fecal materials and 67 organ samples). The predominant Salmonella (S.) enterica serotype and serovar was group B (69.8%) and S. Typhimurium (47.6%), S. Derby (20.6%) and S. Heidelberg (1.6%). But S. Cholerasuis which is characterized host specific by septicemia and enteritis to pigs was not isolated. Antimicrobial susceptibility of the isolates varies as follows: Norfloxacine (75%), Ciprofloxacin (67.5%), Amikacin (60%), Colistin (60%), Enrofloxacin (55%). All of isolates were resistant to Erythromycin, Penicillin, Tetracycline and Lincomycin. The results of this study provided useful information regarding antimicrobial susceptibility and resistance patterns to treat salmonellosis and to prevent emergence of multidrug resistance Salmonella.

Keywords

References

  1. Alban L, Stark KD. Where should the effort be put to reduce the Salmonella prevalence in the slaughtered swine carcass effectively? Prev Vet Med 2005, 68, 63-79. https://doi.org/10.1016/j.prevetmed.2005.01.001
  2. Baggesen DL, Wegener HC, Bager F, Stege H, Christensen J. Herd prevalence of Salmonella enterica infections in Danish slaughter pigs determined by microbiological testing. Prev Vet Med 1996, 26, 201-213. https://doi.org/10.1016/0167-5877(95)00563-3
  3. Berends BR, van den Bogaard AE, Van Knapen F, Snijders JM. Human health hazards associated with the administration of antimicrobials to slaughter animals. Part II. An assessment of the risks of resistant bacteria in pigs and pork. Vet Q 2001, 23,10-21. https://doi.org/10.1080/01652176.2001.9695069
  4. Botteldoorn N, Herman L, Rijpens N, Heyndrickx M. Phenotypic and molecular typing of Salmonella strains reveals different contamination sources in two commercial pig slaughterhouses. Appl Environ Microbiol 2004, 70, 5305-5314. https://doi.org/10.1128/AEM.70.9.5305-5314.2004
  5. Castanon JIR. History of the use of antibiotic as growth promoters in European poultry feeds. Poult Sci 2007, 86, 2466-2471. https://doi.org/10.3382/ps.2007-00249
  6. Chiu TH, Pang JC, Hwang WZ, Tsen HY. Development of PCR primers for the detection of Salmonella enterica serovar Choleraesuis based on the fliC gene. J Food Prot 2005, 68, 1575-1580. https://doi.org/10.4315/0362-028X-68.8.1575
  7. Clothier KA, Kinyon JM, Frana TS. Comparison of Salmonella serovar isolation and antimicrobial resistance patterns from porcine samples between 2003 and 2008. J Vet Diagn Invest 2010, 22, 578-582. https://doi.org/10.1177/104063871002200412
  8. Dibner JJ, Richards JD. Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci 2005, 84, 634-643. https://doi.org/10.1093/ps/84.4.634
  9. Difco Laboratory. Serological identification of Salmonella. Difco Laboratory, Michigan, 1977.
  10. Futagawa-Saito K, Hiratsuka S, Kamibeppu M, Hirosawa T, Oyabu K, Fukuyasu T. Salmonella in healthy pigs: prevalence, serotype diversity and antimicrobial resistance observed during 1998-1999 and 2004-2005 in Japan. Epidemiol Infect 2008, 136, 1118-1123.
  11. Garcia-Feliz C, Collazos JA, Carvajal A, Herrera S, Echeita MA, Rubio P. Antimicrobial resistance of Salmonella enterica isolates from apparently healthy and clinically ill finishing pigs in Spain. Zoonoses Public Health 2008, 55, 195-205. https://doi.org/10.1111/j.1863-2378.2008.01110.x
  12. Huang TM, Lin TL, Wu CC. Serovar distribution and antimicrobial susceptibility of swine Salmonella isolates from clinically ill pigs in diagnostic submissions from Indiana in the United States. Lett Appl Microbiol 2009, 48, 331-336. https://doi.org/10.1111/j.1472-765X.2008.02530.x
  13. Kawagoe K, Mine H, Asai T, Kojima A, Ishihara K, Harada K, Ozawa M, Izumiya H, Terajima J, Watanabe H, Honda E, Takahashi T, Sameshima T. Changes of multi-drug resistance pattern in Salmonella enterica subspecies enterica serovar typhimurium isolates from food-producing animals in Japan. J Vet Med Sci 2007, 69, 1211-1213. https://doi.org/10.1292/jvms.69.1211
  14. Kim EM, Kim HK, Park SJ, Lee CS, Luo Y, Moon HJ, Yang JS, Park BK. Prevalence and antimicrobial resistance patterns of Salmonella spp. Isolated from different aged pigs in Korea. Korean J Vet Res 2007, 47, 395-398.
  15. Lee WW, Jung BY, Kim HT, Chung KT, Lee GR, Kim KH, Lee DS, Kim YH. Prevalence and antimicrobial susceptibility of Salmonella isolated from Korean slaughter pigs. Korean J Vet Serv 2003, 26, 313-321.
  16. Lomonaco S, Decastelli L, Bianchi DM, Nucera D, Grassi MA, Sperone V, Civera T. Detection of Salmonella in finishing pigs on farm and at slaughter in Piedmont, Italy. Zoonoses Public Health 2009, 56, 137-144. https://doi.org/10.1111/j.1863-2378.2008.01192.x
  17. McDowell SW, Porter R, Madden R, Cooper B, Neill SD. Salmonella in slaughter pigs in Northern Ireland: prevalence and use of statistical modelling to investigate sample and abattoir effects. Int J Food Microbiol 2007, 118, 116-125. https://doi.org/10.1016/j.ijfoodmicro.2007.05.010
  18. Mejia W, Casal J, Zapata D, Sanchez GJ, Martin M, Mateu E. Epidemiology of salmonella infections in pig units and antimicrobial susceptibility profiles of the strains of Salmonella species isolated. Vet Rec 2006, 159, 271-276. https://doi.org/10.1136/vr.159.9.271
  19. Molla B, Berhanu A, Muckle A, Cole L, Wilkie E, Kleer J, Hildebrandt G. Multidrug resistance and distribution of Salmonella serovars in slaughtered pigs. J Vet Med B Infect Dis Vet Public Health 2006, 53, 28-33. https://doi.org/10.1111/j.1439-0450.2006.00900.x
  20. Murray CJ. Salmonellae in the environment. Rev Sci Tech 1991, 10, 765-785. https://doi.org/10.20506/rst.10.3.568
  21. Pfeifer CG, Marcus SL, Steele-Mortimer O, Knodler LA, Finlay BB. Salmonella typhimurium virulence genes are induced upon bacterial invasion into phagocytic and nonphagocytic cells. Infect Immun 1999, 67, 5690-5698.
  22. Popoff MY, Bockemühl J, Gheesling LL. Supplement 2001 (no. 45) to the Kauffmann-White scheme. Res Microbiol 2003, 154,173-174. https://doi.org/10.1016/S0923-2508(03)00025-1
  23. Prendergast DM, Duggan SJ, Gonzales-Barron U, Fanning S, Butler F, Cormican M, Duffy G. Prevalence, numbers and characteristics of Salmonella spp. on Irish retail pork. Int J Food Microbiol 2009, 131, 233-239. https://doi.org/10.1016/j.ijfoodmicro.2009.03.003
  24. Rayamajhi N, Kang SG, Kang ML, Lee HS, Park KY, Yoo HS. Assessment of antibiotic resistance phenotype and integrons in Salmonella enterica serovar Typhimurium isolated from swine. J Vet Med Sci 2008, 70, 1133-1137. https://doi.org/10.1292/jvms.70.1133
  25. Ruiz J, Sempere MA, Varela MC, Gomez J. Modification of the methodology of stool culture for Salmonella detection. J Clin Microbiol 1992, 30, 525-526.
  26. Schwartz KJ. Salmonellosis. In: Taylor DJ, Straw BE, D'Allaire S, Mengeling WL, (eds.). Disease of Swine. 8th ed. pp. 535-551, Blackwell, Oxford, 1999.
  27. Tollefson L, Flynn WT. Impact of antimicrobial resistance on regulatory policies in veterinary medicine: status report. AAPS PharmSci 2002, 4, E37.
  28. Williams LP, Newell KW. Patterns of Salmonella excretion in market swine. Am J Public Health Nations Health 1967, 57, 466-471. https://doi.org/10.2105/AJPH.57.3.466