DOI QR코드

DOI QR Code

Prediction of Three-Dimensional Strip Profile for 6-High Mill in Thin-Strip Rolling

6 단 압연기의 극박 압연공정에서 3 차원 판 형상 예측

  • Lee, Sang-Ho (Dept. of Precision Manufacturing Systems Engineering, Pusan Nat'l Univ.) ;
  • Song, Gil-Ho (Rolling technology research group, POSCO) ;
  • Lee, Sung-Jin (Rolling technology research group, POSCO) ;
  • Kim, Byung-Min (School of Mechanical Engineering, Pusan Nat'l Univ.)
  • Received : 2010.09.30
  • Accepted : 2011.05.23
  • Published : 2011.08.01

Abstract

We predict the rolled-strip profile for a 6-high mill using thin rolling theory and a numerical model. In the numerical model, we calculate the distributions of the contact pressures between the rolls and the rolling pressure between the strip and the work roll in the transverse direction using the geometric structure of the 6-high mill and the boundary conditions. We determine the distribution of the rolling pressure in the rolling direction via a thin-foil rolling model using Fleck's theory. We calculate the three-dimensional elastic deformation of the work roll using the pressures of the width and rolling directions. We then obtain the three-dimensional strip profile via the elastic deformation of the work roll during the rolling process. The profile is verified by a thin cold-rolling test and FE simulation.

본 연구에서는 극박 압연 이론과 6 단 압연기 수식 모델을 이용하여 압연 후 판 형상 예측에 대하여 제안하였다. 폭 방향에서 롤 사이의 접촉 압력과 판과 워크롤 사이의 압연하중은 6 단 압연기의 형상학적 구조와 경계조건을 이용한 수식모델을 통하여 계산된다. 그리고 압연 방향의 압연하중 분포는 Fleck 의 극박 압연 이론을 이용하여 계산하였다. 워크롤의 3 차원 탄성 변형량은 폭 과 압연방향의 압력분포에 의하여 계산된다. 이때, 3 차원 판 형상은 워크롤의 탄성변형에 의하여 얻어진다. 또한 3 차원 판 형상은 극박 압연 실험과 유한요소해석을 통하여 검증하였다.

Keywords

References

  1. Fleck, N. A. and Johnson, K. L., 1987, "Toward a New Theory of Cold Rolling Thin Foil," International Journal of Mechanical Science, Vol. 29, No. 7, pp. 507-524 https://doi.org/10.1016/0020-7403(87)90012-9
  2. Park, H. D. and Lee, J. J., 1988, "The Simulating Model to Strip Profile of 6 High Tandem Cold Rolling Mill," Proceedings of the KSME Spring Annual Meeting, pp. 170-173
  3. Lee, H.S., Lee, Y. S. and Sim, W. B., 2001, "Control Technology of Thickness Deviation of Width Direction in Cold Rolling Mill," The 4th Rolling symposium.
  4. Shi, X., Li, S. Q., Liu, X. H., Wang, G. D. and Xu, J. Y., 2004, "FEM Analysis for Steel Strip Deformation in Cold Rolling Process," Iron and Steel, Vol. 39, No. 11, pp. 45-48.
  5. Han, S. Y., 1996, "Improvement Effect of Thickness Profile by Tapered Work Rolls," Proceedings of the KSME Fall Annual Meeting, 96F182, pp. 1094-1099.
  6. Yu, H. L., Liu, X. H., Lee, G. T. and Park, H. D., 2008, "Numerical Analysis of Strip Edge Drop for Sendzimir Mill," Journal of a Materials Processing Technology, Vol. 208, pp. 42-52. https://doi.org/10.1016/j.jmatprotec.2007.12.124
  7. Song, G. H., Park, H. D., Shin, S. K. and Jin, C. J., 1998, "Analysis of Edge Drop and Development of Numerical Formula for Edge Drop Control of Cold Rolled Sheet," Trans. Of the KSME, A, Vol. 22, No. 4, pp. 723-730.
  8. William, L. R., 1978, "Cold Rolling of Steel," pp. 511-515.
  9. Han, S. Y., Kim, J. T., Lee, Y. H., Yi, J. J. and Kim, J. K., 1990, "Improvement on Edge Drop by Change of Work Roll Type in Silicon Steel Rolling," Trans. Of the KSME, Vol. 14, No. 4, pp. 830-838.

Cited by

  1. Effect of Shape Design Variables on Flexibly-Reconfigurable Roll Forming of Multi-curved Sheet Metal vol.23, pp.2, 2014, https://doi.org/10.5228/KSTP.2014.23.2.103