DOI QR코드

DOI QR Code

경량 복합재 대차프레임의 피로수명 및 강도 평가

An Evaluation of Fatigue Life and Strength of Lightweight Bogie Frame Made of Laminate Composites

  • 전광우 (한밭대학교 기계설계공학과) ;
  • 신광복 (한밭대학교 기계설계공학과) ;
  • 김정석 (한국철도기술연구원 구조연구실)
  • Jeon, Kwang-Woo (Dept. of Mechanical Design Engineering, Hanbat Nat'l Univ.) ;
  • Shin, Kwang-Bok (Dept. of Mechanical Design Engineering, Hanbat Nat'l Univ.) ;
  • Kim, Jung-Seok (Dept. of Railway Structure Research, Korea Railway Research Institute)
  • 투고 : 2010.12.27
  • 심사 : 2011.07.12
  • 발행 : 2011.08.01

초록

본 논문은 4-매 주자직 유리섬유/에폭시 적층 복합재가 적용된 철도차량 경량 대차프레임의 피로 수명 및 강도 평가에 대해 기술한다. 대차프레임 경량화 재질로 적용된 유리섬유/에폭시 4-매 주자직 적층 복합재료의 피로특성 평가를 위하여 경사, 위사 그리고 $0^{\circ}/90^{\circ}$ 방향으로 적층된 시험편에 대하여 인장-압축 피로시험을 수행하였다. 유리섬유/에폭시 4-매 주자직 적층 복합재료의 피로시험은 5Hz의 주파수, -1의 응력비(R), $10^7$의 피로수명을 갖도록 하였다. 또한, JIS E 4207의 하중조건에 따른 대차프레임의 피로강도 평가를 Goodman 선도를 통하여 수행하였다. 유리섬유/에폭시 적층 복합재 경량 대차프레임의 피로수명 및 강도 평가기준을 만족하였으며, 무게를 고려할 경우 기존 대차프레임 재질인 SM490A 금속재에 비하여 우수한 피로특성을 갖는다.

We describe the evaluation of the fatigue life and strength of a lightweight railway bogie frame made of glass fiber/epoxy 4-harness satin-woven composites. To obtain the S-N curve for the evaluation of the fatigue characteristics of the composite bogie frame, we performed a tension-compression fatigue test for composite specimens with different stacking sequences of the warp direction, fill direction, and $0^{\circ}/90^^{\circ}$ direction. We used a stress ratio (R) of -1, a frequency of 5 Hz, and an endurance limit of $10^7$. The fatigue strength of the composite bogie frame was evaluated by a Goodman diagram according to JIS E 4207. The results show that the fatigue life and strength of the lightweight composite bogie satisfy the requirements of JIS E 4207. Given its weight, its performance was better than that of a conventional metal bogie frame based on an SM490A steel material.

키워드

참고문헌

  1. Jung, N. Y. and Lee, S. B., 1997, "Light Weight by Application of Aluminum Honeycomb Sandwich Panels in End Door of Rolling Stock," Autumn Conference of The Korean Society of Machine Tool Engineers Conference, pp. 284-291.
  2. Shin, K. B., Koo, D. H., Han, S. H. and Park, K. J., 2004, " A Study on Material Selection of the Carbody Structure of Korean Tilting Train eXpress(TTX) through the Verification of Design Requirements," Journal of the Korean Society for Railway, Vol. 7, No. 2, pp. 77-84.
  3. Choi, J. M., 1995, "Light weight design of bodyshell by material substitution", Korea Institute of Machinery and Materials.
  4. Chi, C. H. and Yang, J. H., 2001, "Effect of Graphite/Epoxy(CFRP) Surface Treatment on 8 the Shear Strength of CFRP/Metal Composites," Korean Institute of Surface Engineering, Vol.34, No. 3, pp. 225-230.
  5. Kim, J. S., Jeong, J. C., Cho, S. H. and Seo, S. I., 2006, "Analytical and Experimental Studies on the Natural Frequency of a Composite Train Carbody," The Korean Society for Mechanical Engineers, Vol. 30, No. 4, pp. 473-480 https://doi.org/10.3795/KSME-A.2006.30.4.473
  6. Ko, H. Y., Shin, K. B. and Jeong, J. C., 2009, "A Study on the Comparison of Structural Performance Test and Analysis for Design Verification of Bimodal Tram Vehicle made of Sandwich Composites," The Korean Society for Railway, Vol. 12, No. 4, pp. 518-525.
  7. Ko, H. Y., Shin, K. B., Cho, S. H. and Kim, D. H., 2008, "An Evaluation of Structural Integrity and Crashworthiness of Automatic Guideway Transit (AGT) Vehicle made of Sandwich Composites," The Korean Society of Composite Materials, Vol. 21, No. 5, pp. 15-22.
  8. Maurin, L., Boussoir, J., Rougeault, S., Bugaud, M., Ferdinand, P., Landrot, A. G., Grunevald, Y. H. and Chauvin, T., 2002, "FBG-based Smart Composite Bogie for Railway Applications," IEEE Conference, Vol. 1, pp. 91-94. https://doi.org/10.1109/OFS.2002.1000509
  9. Kim, W. J., Song, S. Y., Park, G. S. and Park, H. S., 2007, "Evaluation of static and fatigue strength applying European Standard for the bogie frame of Disel Multiple Unit," Autumn Conference of The Korean Society for Railway, pp. 797-804.
  10. Jang, S. S., 2007, "A Reliability Analysis on the Fatigue Life Prediction in Carbon/Epoxy Composite Material," The Korean Society of Industrial Application, Vol. 10, No. 3, pp.143-147.
  11. JIS E 4702 : Truck frames for railway rolling stock.
  12. Kim, J. S., Yoon, H. J. and Shin, K. B., 2010, "Design of a Composite Side Beam for the Railway Bogie Frame," PRICM 7, pp.2676-2679
  13. Gamstedt, E. K. and Sjoegren, B. A., 1999, "Micromechanisms in tension-compression fatigue of composite laminates containing transverse plies," Composites Science and Technology, Vol. 59, pp. 167-178. https://doi.org/10.1016/S0266-3538(98)00061-X
  14. Hwang, W. and Han, K. S., 1986, "Fatigue of Composites Fatigue Modulus Concept and Life Prediction," Journal of Composite Materials, Vol. 20, pp. 154-165. https://doi.org/10.1177/002199838602000203
  15. Park, J. S., Seok, C. S., Koo, J. M., Kim, D. J., Shin, J. H. and Goo, B. C., 2004, "Fatigue Characteristics of SM490A Welded Joints for Bogie Frame," Journal of Korea Society for Precision Engineering, Vol. 21, pp. 146-153
  16. Bryan., H., 2003, "Fatigue Composite Materials," CRC Press.

피인용 문헌

  1. A study on evaluation of fatigue strength of a GFRP composite bogie frame for urban subway vehicles vol.22, pp.4, 2013, https://doi.org/10.1080/09243046.2013.795215
  2. Evaluation of structural integrity after ballast-flying impact damage of a GFRP lightweight bogie frame for railway vehicles vol.29, pp.6, 2015, https://doi.org/10.1007/s12206-015-0528-9
  3. An investigation on the fatigue behavior of DCB specimen bonded with aluminum foam at Mode III vol.30, pp.10, 2016, https://doi.org/10.1007/s12206-016-0915-x
  4. Change of Mechanical Properties of Injection-Molded Glass-Fiber-Reinforced Plastic (GFRP) According to Temperature and Water Absorption for Vehicle Weight Reduction vol.37, pp.2, 2013, https://doi.org/10.3795/KSME-A.2013.37.2.199
  5. A study on fracture behaviors of aluminum and CFRP jointed with pin vol.32, pp.8, 2018, https://doi.org/10.1007/s12206-018-0713-8