DOI QR코드

DOI QR Code

Synthesis and Characterization of SnO2 Nanoparticles by Hydrothermal Processing

  • Kim, Ho-Jung (School of Nano & Advanced Material Engineering, College of Engineering, Changwon National University) ;
  • Son, Jeong-Hun (School of Nano & Advanced Material Engineering, College of Engineering, Changwon National University) ;
  • Bae, Dong-Sik (School of Nano & Advanced Material Engineering, College of Engineering, Changwon National University)
  • Received : 2011.06.03
  • Accepted : 2011.07.18
  • Published : 2011.08.27

Abstract

Tin (IV) dioxide ($SnO_2$) has attracted much attention due to its potential scientific significance and technological applications. $SnO_2$ nanoparticles were prepared under low temperature and pressure conditions via precipitation from a 0.1 M $SnCl_4{\cdot}5H_2O$ solution by slowly adding $NH_4OH$ while rapidly stirring the solution. $SnO_2$ nanoparticles were obtained from the reaction in the temperature range from 130 to $250^{\circ}C$ during 6 h. The microstructure and phase of the synthesized tin oxide particles were studied using XRD and TEM analyses. The average crystalline sizes of the synthesized $SnO_2$ particles were from 5 to 20 nm and they had a narrow distribution. The average crystalline size of the synthesized particles increased as the reaction temperature increased. The crystalline size of the synthesized tin oxide particles decreased with increases in the pH value. The X-ray analysis showed that the synthesized particles were crystalline, and the SAED patterns also indicate that the synthesized $SnO_2$ nanoparticles were crystalline. Furthermore, the morphology of the synthesized $SnO_2$ nanoparticles was as a function of the reaction temperature. The effects of the synthesis parameters, such as the pH condition and reaction temperature, are also discussed.

Keywords

References

  1. R. Pool, Science, 248, 1186 (1990). https://doi.org/10.1126/science.248.4960.1186
  2. Y. Wang and N. Herron, J. Phys. Chem., 95, 525 (1991). https://doi.org/10.1021/j100155a009
  3. B. Falabrettia and J. Robertson, J. Appl. Phys. 102, 123703/1 (2007).
  4. P. G. Harrison and M. J. Willett, Nature, 332, 337 (1988). https://doi.org/10.1038/332337a0
  5. W. Gopel, Sensors: A Comprehensive Survey -Vol. 9, p. 8, ed. W. Gopel, J. Hesse and J. N. Zemel, VCH: Weinheim, Germany (1995).
  6. M. Law, H. Kind, B. Messer, F. Kim and P. Yang, Angew. Chem. Int. Ed., 41, 2405 (2002).
  7. B. Wang, L. F. Zhu, Y. H. Yang, N. S. Xu and G. W. Yang, J. Phys. Chem. C, 112, 6643 (2008). https://doi.org/10.1021/jp8003147
  8. G. X. Wang, J. S. Park, M. S. Park and X. L. Gou, Sensor. Actuator. B Chem., 131, 313 (2008). https://doi.org/10.1016/j.snb.2007.11.032
  9. H. Wang, J. Liang, H. Fan, B. Xi, M. Zhang, S. Xiong, Y. Zhu and Y. Qian, J. Solid State Chem., 181, 122 (2008). https://doi.org/10.1016/j.jssc.2007.11.010
  10. R. E. Aitchison, Aust. J. Appl. Sci., 5, 10 (1954).
  11. Y. S. He, J. C. Campbell, R. C. Murphy, M. F. Arendt and J. S. Swinnea, J. Mater. Res., 8, 3131 (1993). https://doi.org/10.1557/JMR.1993.3131
  12. X. Duan, Y. Huang, R. Agarwal and C. M. Lieber, Nature, 421, 241 (2003). https://doi.org/10.1038/nature01353
  13. L. Vayssieres and M. Graetzel, Angew. Chem. Int. Ed., 43, 3666 (2004). https://doi.org/10.1002/anie.200454000
  14. Y. Fukai, Y. Kondo, S. Mori and E. Suzuki, Electrochem. Comm., 9, 1439 (2007). https://doi.org/10.1016/j.elecom.2007.01.054
  15. G. R. R. A. Kumara, K. Tennakone, I. R. M. Kottegoda, P. K. M. Bandaranayake, A. Konno, M. Okuya, S. Kaneko and K. Murakami, Semicond. Sci. Tech., 18, 312 (2003). https://doi.org/10.1088/0268-1242/18/4/321
  16. S. Hirano, Am. Ceram. Soc. Bull., 66, 1342 (1987).
  17. W. J. Dawson, Am. Ceram. Soc. Bull., 67, 1673 (1989).
  18. S. B. Cho, S. Venigalla and J. H. Adair, Science, Technology, and Applications of Colloidal Suspensions Ceramic Transactions, p.139, ed. J. H. Adair, J. A. Casey, C. A. Randall and S. Venigalla, American Ceramic Society, Indiana, USA (1997).
  19. K. Haberko and W. Pyda, Advances in Ceramics, Science and Technology of Zirconia II, p.774, ed. M. Ruhle, N. Claussen and A. H. Heuer, Americal Ceramic Society, USA (1983).

Cited by

  1. Powders by a Modified Solvothermal Process vol.22, pp.2, 2012, https://doi.org/10.3740/MRSK.2012.22.2.78