DOI QR코드

DOI QR Code

Evaluations of Y2O3 Powder Synthesized Using Oxalic Acid

옥살산을 이용한 Y2O3 분말제조와 특성 평가

  • Son, Bo-Young (School of Biological Sciences and Chemistry/Institute of Basic Science, Sungshin Womens Univ.) ;
  • Jung, Mi-Ewon (School of Biological Sciences and Chemistry/Institute of Basic Science, Sungshin Womens Univ.)
  • 손보영 (성신여자대학교 생명과학.화학부/기초과학연구소) ;
  • 정미원 (성신여자대학교 생명과학.화학부/기초과학연구소)
  • Received : 2011.06.22
  • Accepted : 2011.07.27
  • Published : 2011.08.27

Abstract

Nano-sized $Y_2O_3$ powders were prepared via a sol-gel method starting with $Y(NO_3)_3{\cdot}6H_2O$ (Yttrium(III) nitrate hexahydrate) and water with ethanol as a cosolvent. $Y_2O_3$ is an important rare earth oxide and has been considered for use in nuclear applications, such as ceramic materials, due to its excellent optical and refractory characteristics. It has been used as a chemically stable substrate, a crucible material for melting reactive metals, and a nozzle material for jet casting molten rare earth-iron magnetic alloys. Oxalic acid ($C_2H_2O_4$) has been adopted as a chelating agent in order to control the rate of hydrolysis and polycondensation, and ammonia was added in order to adjust the base condition. The synthesized $Y_2O_3$ powder was characterized using TG/DTA, XRD, FE-SEM, BET and Impedance Analyzer analyses. The powder changed its properties in accordance with the pH conditions of the catalyst. As the pH increases according to the FE-SEM, the grain grew and it showed that the pore size decreased while confirming the effect of the grain size. The nano-material $Y_2O_3$ powders demonstrated that the surface area was improved with the addition of oxalic acid with ammonium hydroxide.

Keywords

References

  1. X. Wang, J. Zhuang, Q. Peng and Y. Li, Nature, 437(7055),121 (2005). https://doi.org/10.1038/nature03968
  2. G. Xu, Y. -W. Zhang, C. -S. Liao and C. -H. Yan, J. Am. Ceram. Soc., 87(12), 2275 (2004). https://doi.org/10.1111/j.1151-2916.2004.tb07504.x
  3. T. Ikegami, J. -G. Li, T. Mori and Y. Moriyoshi, J. Am. Ceram. Soc., 85(7), 1725 (2002).
  4. H. M. Ismail and G. A. M. Hussein, Powder Tech., 87, 87 (1996). https://doi.org/10.1016/0032-5910(95)03060-3
  5. J. K. Lee, H. H. Kang, Y. Hwang, H. S. Kwak and W. S. Lee, Kor. J. Mater. Res., 7(5), 411 (1997) (in Korean).
  6. Y. Li, X. Lin, Y. Wang, J. Luo and W. Sun, J. Rare Earths,24, 34 (2006). https://doi.org/10.1016/S1002-0721(06)60061-6
  7. W. J. Tropf and M. E. Thomas, Handbook of Optical constants of Solids - Vol. 2, p. 1079, ed. E. D. Palik, Academic Press, USA (1991). doi:10.1016/B978-012544415-6.50096-0.
  8. F. Mirjalili, M. Hasmaliza and L. C. Abdullah, Ceram. Int.,36, 1253 (2010). https://doi.org/10.1016/j.ceramint.2010.01.009
  9. S. Yilmaz, Y. Kutmen-Kalpakli and E. Yilmaz, Ceram. Int., 35(5), 2029 (2009). https://doi.org/10.1016/j.ceramint.2008.11.006
  10. A. Leleckaite and A. Kareiva, Opt. Mater., 26, 123 (2004). https://doi.org/10.1016/j.optmat.2003.11.009
  11. C. J. Brinker and G. W. Scherer, Sol-Gel Science, p. 22, Academic Press, San Diego, CA (1990).
  12. A. Dupont, C. Parent, B. Le Garrec and J. M. Heintz, J. Solid State. Chem., 171, 152 (2003). https://doi.org/10.1016/S0022-4596(02)00202-5
  13. Y. J. Hao, Q. Y. Lai, J. Z. Lu, H. L. Wang, Y. D. Chen and X. Y. Ji, J. Power Sourc., 158, 1358 (2006) https://doi.org/10.1016/j.jpowsour.2005.09.063
  14. J. H. Park, S. C. Chung, C. Oh, S. I. Shin, S. S Im and S. G. Oh, J. Korean Ind. Eng. Chem., 13(6), 502 (2002) (in Korean).
  15. J. H. De Boer, in proceedings of the tenth symposium of the Colston Research Society (London, UK, March 1958) ed. D. H. Everett and F. S. Stone (Academic Press, New York, USA, 1959) P.58.