DOI QR코드

DOI QR Code

Establishment and characterization of an immortalized human dermal papilla cell line

  • Shin, Seung-Hyun (Department of Immunology and Hair Research Center, School of Medicine, Kyungpook National University) ;
  • Park, Sang-Yoon (Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University) ;
  • Kim, Moon-Kyu (Department of Immunology and Hair Research Center, School of Medicine, Kyungpook National University) ;
  • Kim, Jung-Chul (Department of Immunology and Hair Research Center, School of Medicine, Kyungpook National University) ;
  • Sung, Young-Kwan (Department of Immunology and Hair Research Center, School of Medicine, Kyungpook National University)
  • Received : 2011.03.28
  • Accepted : 2011.06.01
  • Published : 2011.08.31

Abstract

Establishment of immortalized human dermal papilla cells (DPCs) retaining the characteristics of DPCs would be a great help for hair researchers. We recently established a simian virus 40T (SV40T)-transformed human DP cell line (SV40TDPC). However, the cell line senesced around passage 25 and ceased proliferation. In this study, we introduced the human telomerase reverse transcriptase (hTERT) gene into SV40T-DPC and established an immortalized human DP cell line. The cell line, SV40T-hTERT-DPC, did not induce tumors when inoculated into nude mice. SV40T-hTERT-DPC maintained morphology of early passage DPCs, expressed markers of DPCs, and retained responses to Wnt/${\beta}$-catenin and bone morphogenic protein (BMP) signaling pathways known to be required for hair-inducing activity of DPCs. The data strongly suggest that SV40T-hTERT-DPC retains many characteristics of human DPCs in vivo without malignant transformation.

Keywords

References

  1. Hardy, M. H. (1992) The secret life of the hair follicle. Trends Genet. 8, 55-61. https://doi.org/10.1016/0168-9525(92)90044-5
  2. Millar, S. E. (2002) Molecular mechanisms regulating hair follicle development. J. Invest. Dermatol. 118, 216-225. https://doi.org/10.1046/j.0022-202x.2001.01670.x
  3. Botchkarev, V. A. and Kishimoto, J. (2003) Molecular control of epithelial-mesenchymal interactions during hair follicle cycling. J. Investig. Dermatol. Symp. Proc. 8, 46-55. https://doi.org/10.1046/j.1523-1747.2003.12171.x
  4. Messenger, A. G. (1984) The culture of dermal papilla cells from human hair follicles. Br. J. Dermatol. 110, 685-689. https://doi.org/10.1111/j.1365-2133.1984.tb04705.x
  5. Yang, C. C. and Cotsarelis, G. (2010) Review of hair follicle dermal cells. J. Dermatol. Sci. 57, 2-11. https://doi.org/10.1016/j.jdermsci.2009.11.005
  6. Ohyama, M., Zheng, Y., Paus, R. and Stenn, K. S. (2010) The mesenchymal component of hair follicle neogenesis: background, methods and molecular characterization. Exp. Dermatol. 19, 89-99. https://doi.org/10.1111/j.1600-0625.2009.00935.x
  7. Park, S. Y., Kwack, M. H., Chung, E. J., Im, S. U., Han, I. S., Kim, M. K., Kim, J. C. and Sung, Y. K. (2007) Establishment of SV40T-transformed human dermal papilla cells and identification of dihydrotestosterone-regulated genes by cDNA microarray. J. Dermatol. Sci. 47, 201-208. https://doi.org/10.1016/j.jdermsci.2007.04.005
  8. Halvorsen, T. L., Leibowitz, G. and Levine, F. (1999) Telomerase activity is sufficient to allow transformed cells to escape from crisis. Mol. Cell. Biol. 19, 1864-1870. https://doi.org/10.1128/MCB.19.3.1864
  9. Jahoda, C. A. B., Reynolds, A. J., Chaponnier, C., Forester, J. C. and Gabbiani, G. (1991) Smooth muscle $\alpha$-actin is a marker for hair follicle dermis in vivo and in vitro. J. Cell Sci. 99, 627-636.
  10. Malgouries, S., Thibaut, S. and Bernard, B. A. (2008) Proteoglycan expression patterns in human hair follicle. Br. J. Dermatol. 158, 234-242.
  11. Maretto, S., Cordenonsi, M., Dupont, S., Braghetta, P., Broccoli, V., Hassan, A. B., Volpin, D., Bressan, G. M. and Piccolo, S. (2003) Mapping Wnt/$\beta$-catenin signaling during mouse development and in colorectal tumors. Proc. Natl. Acad. Sci. U. S. A. 100, 3299-3304. https://doi.org/10.1073/pnas.0434590100
  12. Enshell-Seijffers, D., Lindon, C., Kashiwagi, M. and Morgan, B. A. (2010) $\beta$-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Dev. Cell. 18, 633-642. https://doi.org/10.1016/j.devcel.2010.01.016
  13. Kishimoto, J., Burgeson, R. E. and Morgan, B. A. (2000) Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev. 14, 1181-1185.
  14. Shimizu, H. and Morgan, B. A. (2004) Wnt signaling through the β-catenin pathway is sufficient to maintain, but not restore, anagen-phase characteristics of dermal papilla cells. J. Invest. Dermatol. 122, 239-245. https://doi.org/10.1046/j.0022-202X.2004.22224.x
  15. Kitagawa, T., Matsuda, K., Inui, S., Takenaka, H., Katoh, N., Itami, S., Kishimoto, S. and Kawata, M. (2009) Keratinocyte growth inhibition through the modification of Wnt signaling by androgen in balding dermal papilla cells. J. Clin. Endocrinol. Metab. 94, 1288-1294. https://doi.org/10.1210/jc.2008-1053
  16. Shin, H., Kwack, M. H., Shin, S. H., Oh, J. W., Kang, B. M., Kim, A. A., Kim, J., Kim, M. K., Kim, J. C. and Sung, Y. K. (2010) Identification of transcriptional targets of Wnt/ $\beta$-catenin signaling in dermal papilla cells of human scalp hair follicles: EP2 is a novel transcriptional target of Wnt3a. J. Dermatol. Sci. 58, 91-96. https://doi.org/10.1016/j.jdermsci.2010.02.011
  17. Rendl, M., Polak, L. and Fuchs, E. (2008) BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties. Genes Dev. 22, 543-557. https://doi.org/10.1101/gad.1614408
  18. Miyazono, K., Maeda, S. and Imamura, T. (2005) BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev. 16, 251-263. https://doi.org/10.1016/j.cytogfr.2005.01.009
  19. Gazzerro, E., Gangji, V. and Canalis, E. (1998) Bone morphogenetic proteins induce the expression of noggin, which limits their activity in cultured rat osteoblasts. J. Clin. Invest. 102, 2106-2114. https://doi.org/10.1172/JCI3459
  20. Haudenschild, D. R., Palmer, S. M., Moseley, T. A., You, Z. and Reddi, A. H. (2004) Bone morphogenetic protein (BMP)-6 signaling and BMP antagonist noggin in prostate cancer. Cancer Res. 64, 8276-8284. https://doi.org/10.1158/0008-5472.CAN-04-2251
  21. Won, C. H., Choi, S. J., Kwon, O. S., Park, W. S., Kang, Y. J., Yoo, H. G., Chung, J. H., Cho, K. H., Eun, H. C. and Kim, K. H. (2010) The establishment and characterization of immortalized human dermal papilla cells and their hair growth promoting effects. J. Dermatol. Sci. 60, 196-198. https://doi.org/10.1016/j.jdermsci.2010.08.015
  22. Kwack, M. H., Sung, Y. K., Chung, E. J., Im, S. U., Ahn, J. S., Kim, M. K. and Kim, J. C. (2008) Dihydrotestosteroneinducible dickkopf 1 from balding dermal papilla cells causes apoptosis in follicular keratinocytes. J. Invest. Dermatol. 128, 262-269. https://doi.org/10.1038/sj.jid.5700999

Cited by

  1. Establishment and molecular characterization of human dermal mesenchymal-like stem cells derived from human scalp biopsy of androgenetic alopecia patient vol.03, pp.02, 2013, https://doi.org/10.4236/scd.2013.32012
  2. Neural Stem Cells Restore Hair Growth through Activation of the Hair Follicle Niche vol.25, pp.8, 2016, https://doi.org/10.3727/096368916X691466
  3. Establishment of an immortalized mouse dermal papilla cell strain with optimized culture strategy vol.6, pp.2167-8359, 2018, https://doi.org/10.7717/peerj.4306
  4. screening model for hair growth vol.40, pp.5, 2018, https://doi.org/10.1111/ics.12489
  5. A prospect of cell immortalization combined with matrix microenvironmental optimization strategy for tissue engineering and regeneration vol.9, pp.1, 2019, https://doi.org/10.1186/s13578-018-0264-9