DOI QR코드

DOI QR Code

Downregulation of ARFGEF1 and CAMK2B by promoter hypermethylation in breast cancer cells

  • Kim, Ju-Hee (Department of Life Science, Dongguk University-Seoul) ;
  • Kim, Tae-Woo (Department of Life Science, Dongguk University-Seoul) ;
  • Kim, Sun-Jung (Department of Life Science, Dongguk University-Seoul)
  • Received : 2011.04.06
  • Accepted : 2011.06.08
  • Published : 2011.08.31

Abstract

To identify novel genes that are regulated by promoter methylation, a combinational approach involving in silico mining followed by molecular assay was performed. From the expression microarray data registered in the European bioinformatics institute (EBI), genes showing downregulation in breast cancer cells were initially screened and then selected by e-Northern analysis using the Unigene database. A series of these in silico methods identified CAMK2B and ARFGEF1 as candidates, and the two genes were revealed to be hypermethylated in breast cancer cell lines and hypomethylated in normal breast cell lines. Additionally, cancer cell lines showed downregulated expression of these genes. Furthermore, treatment of the cancer cell lines with a demethylation agent, 5-Aza-2'-deoxycytidine, recovered expression of CAMK2B and ARFGEF1, implying that hypermethyaltion silenced gene activity in cancer cells. Taken together, promoter methylations of CAMK2B and ARFGEF1 are novel epigenetic markers identified in breast cancer cell lines and can be utilized for the application to clinical cancer tissues.

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Kulis, M. and Esteller, M. (2010) DNA methylation and cancer. Adv. Genet 70, 27-56. https://doi.org/10.1016/B978-0-12-380866-0.60002-2
  2. Dworkin, A. M., Huang, T. H. and Toland, A. E. (2009) Epigenetic alterations in the breast: Implications for breast cancer detection, prognosis and treatment. Semin. Cancer Biol. 19, 165-171. https://doi.org/10.1016/j.semcancer.2009.02.007
  3. Ai, L., Kim, W. J., Kim, T. Y., Fields, C. R., Massoll, N. A., Robertson, K. D. and Brown, K. D. (2006) Epigenetic silencing of the tumor suppressor cystatin M occurs during breast cancer progression. Cancer Res. 66, 7899-7909. https://doi.org/10.1158/0008-5472.CAN-06-0576
  4. Nabilsi, N. H., Broaddus, R. R. and Loose, D. S. (2009) DNA methylation inhibits p53-mediated survivin repression. Oncogene 28, 2046-2050. https://doi.org/10.1038/onc.2009.62
  5. Singh, P., Yang, M., Dai, H., Yu, D., Huang, Q., Tan, W., Kernstine, K., Lin, D. and Shen, B. (2008) Overexpression and hypomethylation of flap endonuclease 1 gene in breast and other cancers. Mol. Cancer Res. 6, 1710-1717.
  6. Ito, Y., Koessler, T., Ibrahim, A., Rai, S., Vowler, S., Abu- Amero, S., Silva, A., Maia, A., Huddleston, J., Uribe- Lewis, S., Woodfine, K., Jagodic, M., Nativio, R., Dunning, A., Moore, G., Klenova, E., Bingham, S., Pharoah, P., Brenton, J., Beck, S., Sandhu, M. and Murrell, A. (2008) Somatically acquired hypomethylation of IGF2 in breast and colorectal cancer. Hum. Mol. Genet. 17, 2633-2643. https://doi.org/10.1093/hmg/ddn163
  7. Tommasi, S., Karm, D. L., Wu, X., Yen, Y. and Pfeifer, G. P. (2009) Methylation of homeobox genes is a frequent and early epigenetic event in breast cancer. Breast Cancer Res. 11, R14. https://doi.org/10.1186/bcr2233
  8. Van der Auwera, I., Yu, W., Suo, L., Van Neste, L., van Dam, P., Van Marck, E. A., Pauwels, P., Vermeulen, P. B., Dirix, L. Y. and Van Laere, S. J. (2010) Array-based DNA methylation profiling for breast cancer subtype discrimination. PLoS One 5, e12616. https://doi.org/10.1371/journal.pone.0012616
  9. Zeller, C., Hinzmann, B., Seitz, S., Prokoph, H., Burkhard- Goettges, E., Fischer, J., Jandrig, B., Schwarz, L. E., Rosenthal, A. and Scherneck, S. (2003) SASH1: a candidate tumor suppressor gene on chromosome 6q24.3 is downregulated in breast cancer. Oncogene 22, 2972-2983. https://doi.org/10.1038/sj.onc.1206474
  10. Hesson, L., Dallol, A., Minna, J. D., Maher, E. R. and Latif, F. (2003) NORE1A, a homologue of RASSF1A tumour suppressor gene is inactivated in human cancers. Oncogene 22, 947-954. https://doi.org/10.1038/sj.onc.1206191
  11. Thirlwell, C., Eymard, M., Feber, A., Teschendorff, A., Pearce, K., Lechner, M., Widschwendter, M. and Beck, S. (2010) Genome-wide DNA methylation analysis of archival formalin-fixed paraffin-embedded tissue using the Illumina Infinium HumanMethylation27 BeadChip. Methods 52, 248-254. https://doi.org/10.1016/j.ymeth.2010.04.012
  12. Novak, G., Seeman, P. and Tallerico, T. (2006) Increased expression of calcium/calmodulin-dependent protein kinase IIbeta in frontal cortex in schizophrenia and depression. Synapse 59, 61-68. https://doi.org/10.1002/syn.20211
  13. Pacheco-Rodriguez, G., Moss, J. and Vaughan, M. (2002) BIG1 and BIG2: brefeldin A-inhibited guanine nucleotideexchange proteins for ADP-ribosylation factors. Methods Enzymol. 345, 397-404. https://doi.org/10.1016/S0076-6879(02)45032-X
  14. Teschendorff, A. E., Menon, U., Gentry-Maharaj, A., Ramus, S. J., Gayther, S. A., Apostolidou, S., Jones, A., Lechner, M., Beck, S., Jacobs, I. J. and Widschwendter, M. (2009) An epigenetic signature in peripheral blood predicts active ovarian cancer. PLoS One 4, e8274. https://doi.org/10.1371/journal.pone.0008274
  15. Padilla, P. I., Uhart, M., Pacheco-Rodriguez, G., Peculis, B. A., Moss, J. and Vaughan, M. (2008) Association of guanine nucleotide-exchange protein BIG1 in HepG2 cell nuclei with nucleolin, U3 snoRNA, and fibrillarin. Proc. Natl. Acad. Sci. U. S. A. 105, 3357-3361. https://doi.org/10.1073/pnas.0712387105
  16. Pfeffer, S. R. (1992) GTP-binding proteins in intracellular transport. Trends Cell Biol. 2, 41-46. https://doi.org/10.1016/0962-8924(92)90161-F
  17. Gaertner, T. R., Kolodziej, S. J., Wang, D., Kobayashi, R., Koomen, J. M., Stoops, J. K. and Waxham, M. N. (2004) Comparative analyses of the three-dimensional structures and enzymatic properties of alpha, beta, gamma and delta isoforms of Ca2+-calmodulin-dependent protein kinase II. J. Biol. Chem. 279, 12484-12494. https://doi.org/10.1074/jbc.M313597200
  18. Takeuchi, Y., Nomura, K. and Fukunaga, K. (2004) Differential subcellular distribution of Ca2+/calmodulin-dependent protein kinase II isoforms in the striatum and NG108-15 cells. J. Neurosci. Res. 75, 480-490. https://doi.org/10.1002/jnr.20010
  19. Luedi, P. P., Dietrich, F. S., Weidman, J. R., Bosko, J. M., Jirtle, R. L. and Hartemink, A. J. (2007) Computational and experimental identification of novel human imprinted genes. Genome Res. 17, 1723-1730. https://doi.org/10.1101/gr.6584707
  20. Lu, L., Katsaros, D., de la Longrais, I. A., Sochirca, O. and Yu, H. (2007) Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res. 67, 10117-10122. https://doi.org/10.1158/0008-5472.CAN-07-2544

Cited by

  1. Selection and evaluation of new reference genes for RT-qPCR analysis in Epinephelus akaara based on transcriptome data vol.12, pp.2, 2017, https://doi.org/10.1371/journal.pone.0171646
  2. Upregulation of the microRNA cluster at the Dlk1-Dio3 locus in lung adenocarcinoma vol.34, pp.1, 2015, https://doi.org/10.1038/onc.2013.523
  3. Identification and Comparison of Aberrant Key Regulatory Networks in Breast, Colon, Liver, Lung, and Stomach Cancers through Methylome Database Analysis vol.9, pp.5, 2014, https://doi.org/10.1371/journal.pone.0097818
  4. Activation of hepatocyte growth factor/MET signaling initiates oncogenic transformation and enhances tumor aggressiveness in the murine prostate vol.293, pp.52, 2018, https://doi.org/10.1074/jbc.RA118.005395