DOI QR코드

DOI QR Code

Optimization of Expression, Purification, and NMR Measurement for Structural Studies of Syndecan-4 Transmembrane Region

  • Park, Tae-Joon (Department of Chemistry & Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies) ;
  • Lee, Min-Hye (Department of Chemistry & Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies) ;
  • Choi, Sung-Sub (Department of Chemistry & Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies) ;
  • Kim, Yong-Ae (Department of Chemistry & Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies)
  • Received : 2011.05.01
  • Accepted : 2011.05.31
  • Published : 2011.06.20

Abstract

Syndecan-4 is a transmembrane heparan sulfate proteoglycan, which is a coreceptor with integrins in cell adhesion. To get better understand the mechanism and function of Syndecan-4, it is critical to elucidate the three-dimensional structure of a single transmembrane spanning region of them. Unfortunately, it is hard to prepare the peptide because syndecan-4 is membrane-bound protein that transverse the lipid bilayer of the cell membrane. Generally, the preparation of transmembrane peptide sample is seriously difficult and time-consuming. In fact, high yield production of transmembrane peptides has been limited by experimental adversities of insufficient yields and low solubility of peptide. Here, we demonstrate experimental processes and results to optimize expression, purification, and NMR measurement condition of Syndecan-4 transmembrane peptide.

Keywords

References

  1. A. C. Rapraeger, J Cell Biol. 149, 995. (2000). https://doi.org/10.1083/jcb.149.5.995
  2. K. Elenius, and M. Jalkanen, J. Cell Sci. 107, 2975. (1994).
  3. M. Salmivirta, and M. Jalkanen, Birkhauser Verlag. 51, 863. (1995).
  4. A. Woods, J. Clin. Invest. 107, 935. (2001). https://doi.org/10.1172/JCI12802
  5. S. M. Kim, J. Kor. Magn. Reson. 13, 1. (2009). https://doi.org/10.6564/JKMRS.2009.13.1.001
  6. A. Woods, and J. R. Couchman, Curr. Opin. Cell Biol.13, 578. (2001). https://doi.org/10.1016/S0955-0674(00)00254-4
  7. M. Bernfield, R. Kokenyesi, M. Kato, M. T. Hinkes, J. Spring, R. L. Gallo, and E. J., Annu. Rev. Cell. Biol. 8, 365. (1992). https://doi.org/10.1146/annurev.cb.08.110192.002053
  8. T. K. Park, M. H. Lee, and Y. Kim, Proc. Biochem. 46, 1161. (2011).
  9. T. J. Park, S. S. Choi, G. A. Gang, and Y. Kim, Protein Expr. Purif. 62, 139. (2008). https://doi.org/10.1016/j.pep.2008.08.008
  10. T. J. Park, J. S. Kim, and Y. Kim, Protein Expr. Purif. 65, 23. (2009). https://doi.org/10.1016/j.pep.2008.12.009
  11. T. J. Park, S. Y. Im, J. S. Kim, and Y. Kim, Proc. Biochem. 45, 682. (2010). https://doi.org/10.1016/j.procbio.2010.01.002
  12. J. S. Kim, T. J. Park, and Y. Kim, J. Kor. Magn. Reson. 13, 96. (2009). https://doi.org/10.6564/JKMRS.2009.13.2.096

Cited by

  1. The Status of Guanine Nucleotides in Taxol-Stabilized Microtubules Probed by31P CPMAS NMR Spectroscopy vol.15, pp.2, 2011, https://doi.org/10.6564/JKMRS.2011.15.2.104