DOI QR코드

DOI QR Code

Nuclear Magnetic Resonance Study of the Raman Spin-Phonon Processes in the Relaxation Mechanisms of Double Sulfate Li3Rb(SO4)2 Single Crystals

  • Heo, Cheol (School of Energy and Integrated Materials Engineering, Kumoh National Institute of Technology) ;
  • Lim, Ae-Ran (Department of Science Education, Jeonju University)
  • 투고 : 2011.05.01
  • 심사 : 2011.05.27
  • 발행 : 2011.06.20

초록

The NMR spectra of $Li_3Rb(SO_4)_2$ crystals and their relaxation processes were investigated by using $^7Li$ and $^{87}Rb$ NMR. The relaxation rates of the $^7Li$ and $^{87}Rb$ nuclei in the crystals were found to increase with increasing temperature, and can be described by the relation $T_1^{-1}{\propto}AT^2$. The dominant relaxation mechanism for these nuclei with electric quadrupole moments is provided by the coupling of these moments to the thermal fluctuations of the local electric field gradient via Raman spin-phonon processes.

키워드

참고문헌

  1. O. V. Bovgyra, I. Stadnyk, and O. Z. Chyzh, Phys. Solid State 48, 1268. (2006). https://doi.org/10.1134/S1063783406070080
  2. M. Maghrabi, A. A. Finch, and P. D. Townsend, J. Phys. Condensed Matter 20, 455207. (2008). https://doi.org/10.1088/0953-8984/20/45/455207
  3. A. R. Lim, P. H. Bong, S. Y. Jeong, and S. H. Kim, J. Phys. Soc. Japan 78, 104701. (2009). https://doi.org/10.1143/JPSJ.78.104701
  4. D. MacHon, C. B. Pinheiro, P. Bouvier, V. P. Dmitriev, and W. A. Crichton, J. Phys. Condensed Matter 22, 315401. (2010). https://doi.org/10.1088/0953-8984/22/31/315401
  5. Z. Tylczynski, Central European J. Phys. 9, 722. (2011). https://doi.org/10.2478/s11534-010-0064-2
  6. C. M. Pina, L. F. Diaz, E. Molins, R. M. Rojas, J. M. Rojo, Z. Kristallogr. 213, 635. (1998). https://doi.org/10.1524/zkri.1998.213.12.635
  7. M. Igarashi, H. Kitagawa, S. Takahashi, R. Yoshizak, Y. Abe, and Z. Naturforsch, A: Phys. Sci. 47, 313. (1992).
  8. J. J. Van der Klink, D. Rytz, F. Borsa, and U. T. Hochli, Phys. Rev. B 27, 89. (1983). https://doi.org/10.1103/PhysRevB.27.89
  9. A. R. Lim, S. Y. Jeong, and S. H. Kim, J. Appl. Phys. 108, 114101. (2010). https://doi.org/10.1063/1.3514152
  10. K. S. Han, and M. Lee, J. Kor. Magn. Reson. 13, 135. (2009). https://doi.org/10.6564/JKMRS.2009.13.2.135
  11. A. R. Lim, and W. K. Jung, J. Kor. Magn. Reson. 14, 18. (2010). https://doi.org/10.6564/JKMRS.2010.14.1.018
  12. A. Abragam, "The Principles of Nuclear Magnetism" Oxford University Press, Oxford, (1961).
  13. J. van Kranendonk, and M. B. Walker, Phys. Rev. Letter 18, 701. (1967). https://doi.org/10.1103/PhysRevLett.18.701
  14. J. van Kranendonk, Physica B 20, 781. (1954).
  15. J. van Kranendonk, Can. J. Phys. 46, 2441. (1968). https://doi.org/10.1139/p68-604