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요 약

그래프 G의 최소 dominating set 문제는 G의 dominating set들 중 가장 작은 크기의 dominating set을 찾는 문제이며, NP-complete class

에 속해 polynomial time안에 해결할 수 없는 문제로 잘 알려져 있다. 그러나, heuristic한 방법 혹은 approximation 방법을 이용해 특정한 분야

에 적용이 가능하다. 본 논문에서는 세 개의 서로 다른 simulated annealing 알고리즘을 제시하여, 이들 알고리즘을 DIMACS에서 제시한 그래

프들에 적용한 경우 효율성 증가가 이루어지는 것을 실험적으로 보이고자 한다.

키워드 :최소 dominating set 문제, simulated annealing 알고리즘

Improving Efficiency of Minimum Dominating Set Problem using

Simulated Annealing Algorithms

Tae Eui Jeong†

ABSTRACT

The minimum dominating set problem of a graph G is to find a smallest possible dominating set. The minimum dominating set

problem is a well-known NP-complete problem such that it cannot be solved in polynomial time. Heuristic or approximation algorithm,

however, will perform well in certain area of application. In this paper, we suggest three different simulated annealing algorithms and

experimentally show better efficiency improvement by applying these algorithms to the graph instances developed by DIMACS.

Keywords : Minimum Dominating Set Problem, Simulated Annealing Algorithm

1. Introduction1)

Let G = (V, E) be a simple undirected graph with

vertex set V = {1, ..., n} and edge set E ⊆ V x V. Let n

and m denote the number of vertices and edges,

respectively. A dominating set of G = (V, E) is a subset

D of V such that every vertex not in D is adjacent to at

least one vertex of D. A dominating set with minimum

cardinality is called the Minimum Dominating Set (MDS).

Minimum Dominating Set Problem (MDSP) of a graph G

is the problem to find the minimum dominating set of G.
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The size of the MDS of G is called the domination

number of G.

MDSP is a well-known NP-complete problem [2, 7].

The problem apparently cannot be solved in polynomial

time. Because of such impracticality of developing an

efficient algorithm for MDSP, it is much focused on the

development of approximation [5, 6] or heuristic

algorithms [3, 4] rather than the correct or optimal

answer for some or all instances of the problem. In

practice, it is possible that an approximation or heuristic

algorithm will perform well experimentally, even if only

for certain types of instances. MDSP, as an optimization

problem, has numerous areas of application in the field of

networks and communications. Abhay [3] suggested a

greedy heuristic algorithm for MDSP, and Sanchis [4]
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1 Begin

2 T = T0;
3 Tstop = Ts;
4 Current_Solution = Generation of a initial solution;

5 While Tstop > 0 do
6 accept = False;

7 For i = 1 to M do

8 New_Solution = Move(Current_Solution);

9 ΔGain = f(Current_Solution) – f(New_Solution);
10 If Accept_Solution(ΔGain, T) then
11 Current_Solution = New_Solution;

12 accept = True;

13 If accept then

14 Tstop = Ts
15 Else

16 Tstop = Tstop – 1
17 T = T * α
18 End

(Figure 1) General structure of the proposed SAs

recently suggested a randomized greedy algorithm for

MDSP.

Since Kirkpatrick [8] first introduced the Simulated

Annealing algorithms (SA) in 1983, the simulated

techniques have been widely used for solving many

combinatorial optimization problems. SA is very similar to

the conventional iterative search algorithm with one major

difference: SA allows permutations to escape from the

local optimum in a controlled manner.

In this paper, we suggest three different simulated

annealing algorithms called SA-random, SA-order, and

SA-degree for MDSP. These algorithms differ in the

sense that, while the first two algorithms are based on

the randomness only, the third algorithm imposes suitable

heuristic knowledge of MDSP. We also compare the

performance of the algorithms by applying them to the

graph instances developed by DIMACS.

The rest of the paper is organized as follows. In

section 2, we first briefly introduce general structure of

simulated annealing algorithm and explain the detail

schemes of our three algorithms. Section 3 contains the

experimental results. Finally, chapter 4 contains some

conclusions.

2. Simulated annealing algorithms for the mini-

mum dominating set

In this paper, we consider simple undirected graphs

only. For notions and notations on simulated annealing

algorithms and graph theory not explained here, please

refer to [9] and [1], respectively. For a graph G = (V,

E), an ordering of V is a bijection β:{1, 2, .., n} « V,

where n = |V|. We denote N(v) be the vertices adjacent

to v in G.

For a graph G = (V, E), a solution is a 0-1 vector X

= (x1, x2, ..., xn) of length n, where each xi is either 0 or

1. Let the subscript i of xi represents the corresponding

vertex of xi in X and denote DX = { i | xi = 1 }. Note

that Dx is a subset of V. For example, if n = 6 and X =

(1, 0, 1, 0, 1, 1) then Dx = {1, 3, 5, 6}. Therefore, in

this paper, we use the two notations X and DX

interchangeably.

If DX is a dominating set of G, then we say that X is

a feasible solution. Also let f(X) = 1

n

i
i
x

=
å

be the fitness

function of a solution X. Then, MDSP is to find the

solution X with minimum f(X) among all possible feasible

solutions.

SA is an iterative procedure that continuously updates

one candidate solution to a new solution until a

termination condition is met. Updating a solution is

usually called move. Figure 2.1 shows the general

structure of the proposed simulated annealing algorithms.

It first generates an initial solution, which is a

dominating set of a given graph, and continuously

updates the current solution according to the move

function. Let X be the current solution and Y be the

solution generated by move function. Then, in line 10 of

the following algorithm, if f(X) > f(Y), then the function

Accept_Solution() returns true. If f(X ) £ f(Y), then

Accept_Solution() returns true if R <
Gain
Te

-D

, where R is

a real random number in (0, 1). In all other cases, it

returns false.
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Based on the algorithm shown in Fig. 1, our proposed

three SAs differ only in line 4 and 8, i.e., the generation

of initial solutions and move operations. The following

three subsections contain the details of the three proposed

SAs for MDSP.

2.1 SA-random

The mechanism of SA-random is based on the

randomness. The initial solution X is generated randomly

and forced to be a feasible solution by adding some

vertices to X. The move operation is also performed in

random fashion. We simply toggle the values of three

randomly chosen bits. The following steps show the

details of generating initial solution X = (x1, x2, ..., xn):

(Step 1) Randomly select some xi's and set them to 1

and set all others to 0.

(Step 1) If X is not feasible then we randomly select xi

which has value 0 and set xi = 1. Repeat Step 1

until X becomes feasible.

For a current solution X = (x1, x2, ..., xn) the following

two steps show the details of the move operation for

SA-random:

(Step 1) Randomly choose three xi's.

(Step 2) For each selected xi apply xi + 1 (mod 2).

2.2 SA-order

Let S be a vector of length n whose elements are the

permutation of integers in the range of [1..n]. Then S can

be treated as a random ordering of the vertices of G. We

visit the vertices of G according to S and build a

dominating set in greedy manner. For the move operation

we choose some subsequence of S and reverse the order

of that subsequence. The following two algorithms

greedy-order and reverse are used as initialization and

move operation, respectively.

Algorithm: greedy-order(G, S)
begin

DX = Æ
for i = 1 to n do

v = S[i];
if v Î G and (N(v) ∩ DX = Æ) then

DX = DX ∪ {v};

delete v and N(v);
end

(Figure 2) Algorithm greedy-order

Algorithm: reverse(G, S, X)
begin

Let p1 and p2 be the two unique integer values
chosen randomly in the range of [1..n];
Assume that p1 < p2 and Let S' = S;

for i = 0 to p2 – p1 do
S'[p1 + i] = S[p2 – i];

S = S';
end

(Figure 3) Algorithm reverse

2.3 SA-degree

Unlike the SA-order, which chooses the vertices in

random manner, we impose some criteria when choose

the next vertex to be included in the minimum

dominating set. If a vertex has larger degree then it

covers more vertices than the vertice with small degree.

Therefore it is quite reasonable to consider the vertice

with larger degree first before considering the vertice

with small degree when constructing a minimum

dominating set. SA-degree uses this idea for constructing

initial feasible solution and its detail is shown in Figure

2.4. Note that the algorithm greedy-maximal is also used

for move operation for SA-degree for maximum

perturbation of the solutions.

Algorithm: greedy-maximal(G)
begin

1 DX = Æ;
2 while G ¹ Æ do
3 let W be the set of vertices with

maximum degree in G;
4 Randomly choose a vertex v from W
5 DX = DX ∪ {v}
6 delete v and N(v) from G
end

(Figure 4) Algorithm greedy-maximal

3. Experiments

Since there is no published benchmark graphs for

MDSP, in order to measure the performance of our

proposed three algorithms we run these algorithms on the

41 graph instances published by DIMACS[10], which

originally developed for the problems of maximum

independent set and minimum coloring. In all tests we

used the following parameters: T = 1000.0, α = 0.98, Ts =
10, and M = 40. Our experiments were run on a

computer with a 2.33 GHz with 2 GB memory.

Table 1 shows the results of executing each algorithm

ten times. For each algorithm the first three columns

contains the result of best, worst, and average sizes of

the dominating set for the corresponding graph among 10

executions of the algorithm. The fourth column shows the

average execution time in seconds. For each algorithm b,

w, and ave represent the best, worst, and average

dominating size. The symbol t represents the average

running time.
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<Table 1> Test Results

Graphs n m Δ(G) δ(G)

Three SA algorithms for MDSP

SA-random SA-order SA-degree

b w ave t b w ave t b w ave t

Frb30-15-1 450 17827 122 42 15 20 17.6 7.9 14 17 16.1 1.1 12 12 12 4.6

Frb30-15-2 450 17874 116 45 18 24 19.9 7.9 14 17 16.0 1.1 12 12 12 4.1

Frb30-15-3 450 17809 122 49 17 21 18.7 7.9 15 17 16.3 1.1 12 12 12 4.2

Frb30-15-4 450 17831 110 48 16 23 19.5 7.9 15 17 16.1 1.1 11 11 11 4.1

Frb30-15-5 450 17794 128 46 18 23 19.6 7.9 16 18 16.6 1.1 12 12 12 4.6

Frb35-17-1 595 27856 132 50 19 26 22.2 14.0 18 21 19.6 1.7 14 14 14 8.5

Frb35-17-2 595 27847 134 53 18 27 23.0 13.2 18 20 18.9 1.7 14 14 14 8.2

Frb35-17-3 595 27931 165 45 20 25 22.9 13.7 18 19 18.8 1.7 14 14 14 8.3

Frb35-17-4 595 27842 150 34 21 25 23.4 13.9 19 21 19.8 1.7 14 14 14 9.5

Frb35-17-5 595 28143 134 44 22 26 23.7 14.0 18 20 18.9 1.7 14 14 14 8.2

Frb40-19-1 760 41314 178 56 25 31 28.8 22.1 22 24 23.1 2.3 16 16 16 15.3

Frb40-19-2 760 41263 171 57 24 33 28.6 22.1 21 24 22.2 2.4 16 17 16.1 18.1

Frb40-19-3 760 41095 159 57 25 29 27.3 22.2 20 23 22.1 2.3 16 16 16 17.3

Frb40-19-4 760 41605 164 67 25 30 28.2 22.3 20 23 21.8 2.3 16 16 16 15.8

Frb40-19-5 760 41619 174 68 25 32 28.1 22.3 21 22 21.7 2.3 15 15 15 17.9

Frb45-21-1 945 59186 188 68 29 38 32.1 34.4 23 26 24.9 3.2 18 18 18 26.5

Frb45-21-2 945 58624 191 74 27 35 30.9 33.9 24 26 25.4 3.2 18 18 18 26.9

Frb45-21-3 945 58245 205 72 27 39 32.6 34.2 22 26 24.7 3.2 17 17 17 27.0

Frb45-21-4 945 58549 212 69 28 36 31.9 34.6 24 27 25.3 3.1 18 18 18 26.7

Frb45-21-5 945 58579 180 70 27 32 30.0 34.1 22 27 25.0 3.2 18 18 18 27.9

Frb50-23-1 1150 80072 208 84 32 40 35.0 49.5 27 29 28.1 4.2 19 19 19 46.4

Frb50-23-2 1150 80851 227 75 31 47 37.1 49.8 27 30 28.1 4.2 19 20 19.6 52.3

Frb50-23-3 1150 81068 204 71 34 43 36.5 49.8 25 29 27.8 4.2 20 20 20 40.8

Frb50-23-4 1150 80258 208 78 32 42 35.8 49.4 27 30 27.9 4.2 19 19 19 45.5

Frb50-23-5 1150 80035 227 69 31 42 36.6 49.7 26 29 27.5 4.2 19 19 19 42.5

Frb53-24-1 1272 94227 232 86 35 45 39.0 60.2 28 31 29.9 4.8 21 21 21 50.1

Frb53-24-2 1272 94289 232 89 33 44 39.1 60.2 27 31 29.4 4.8 21 21 21 51.6

Frb53-24-3 1272 94127 234 88 38 46 40.6 60.3 28 33 29.6 4.9 20 20 20 49.3

Frb53-24-4 1272 94308 226 82 34 41 36.4 59.7 28 31 29.4 4.8 20 20 20 48.7

Frb53-24-5 1272 94227 206 72 33 42 36.9 60.2 28 30 29.1 4.8 21 21 21 51.3

Frb56-25-1 1400 109676 237 88 37 45 41.5 72.8 31 34 32.3 5.6 22 22 22 62.6

Frb56-25-2 1400 109401 237 72 34 45 39.6 72.3 30 33 31.7 5.6 22 22 22 62.7

Frb56-25-3 1400 109379 239 98 36 49 41.8 72.0 31 33 31.9 5.5 21 22 21.7 76.6

Frb56-25-4 1400 110038 241 92 37 43 40.2 72.9 29 33 31.4 5.7 22 22 22 63.9

Frb56-25-5 1400 109601 241 88 37 45 40.9 72.4 30 34 31.5 5.5 21 21 21 61.9

Frb59-26-1 1534 126555 277 94 40 50 43.5 86.3 32 36 33.4 6.3 22 22 22 84.8

Frb59-26-2 1534 126163 265 100 37 46 42.3 86.3 31 35 33.5 6.4 22 22 22 76.7

Frb59-26-3 1534 126082 258 78 38 49 43.2 87.1 32 34 33.2 6.7 23 23 23 76.3

Frb59-26-4 1534 127011 274 98 40 55 44.8 87.4 31 35 33.0 6.3 22 22 22 97.3

Frb59-26-5 1534 125982 238 81 38 53 46.2 86.3 32 34 32.7 6.4 23 23 23 86.1

Frb100-40 4000 572774 446 135 73 106 83.6 609.1 57 60 58.4 25.3 39 39 39 760.4

DSJC250.1 250 3218 38 13 22 26 23.9 2.1 21 28 24.4 0.7 16 16 16 1.8

DSJC500.1 500 12458 68 34 30 36 32.5 8.1 28 33 30.6 1.7 20 20 20 8.1

DSJC1000.1 1000 49629 127 68 37 46 41.0 34.1 34 39 37.1 4.1 23 23 23 39.5

DSJR500.1 500 3555 25 4 53 62 55.3 6.6 47 54 52.0 2.3 42 44 43.1 17.9
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(Figure 5) Graphs (a), (c), (e) and (b), (d), (f) show the convergence ratios of the three algorithms for the graphs Frb30-15-1

and DSJC250.1, respectively. x- and y-axis represent the number of iterations and fitness values, respectively

Table 1 shows that the performance of SA-degree is

much better than those of the other two algorithms. This

is due to the fact that unlike the other two algorithms,

SA-degree does not totally depend on randomness.

SA-degree uses the heuristic of larger degrees of the

graphs. Comparing the best and worst cases of each

algorithm, it can be easily seen that the performance of

SA-degree are very steady. For the 29 test graphs only 4

graphs show the different best and worst size of

dominating sets. These results show that, rather than

based on total randomness, if we add some heuristic

knowledge of the problem, then the performance of the

simulated annealing algorithm can be greatly improved.

Figure 5 shows the convergence ratios of the three

algorithms for the graphs Frb30-15-1 and DSJC250.1,

respectively. For the graph Frb30-15-1, when the number

of iterations closes to 400 the fitness values are start to

converge. However, from the Fig. 5(e), it is easy to see

that SA-degree shows steadier performance compare to

the other two algorithms. Similar observations can be

obtained from the graph DSJC250.1.

4. Conclusion

In this work, we showed that simulated annealing can

be used to efficiently approximate the size of the

minimum dominating set of graphs. For these purposes,

we proposed three simulated annealing algorithms and

measured the performance of these algorithms by

applying them to the widely known graph instances. The

results of the experiments clearly show that, by adding

some suitable heuristic knowledge of the problem, it may

improve the quality of the solutions when we search the

solution space.
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