DOI QR코드

DOI QR Code

Structural, Optical and Photoconductive Properties of Chemically Deposited Nanocrystalline CdS Thin Films

  • Park, Wug-Dong (Department of Railroad Drive and Control, Dongyang University)
  • Received : 2011.06.14
  • Accepted : 2011.07.04
  • Published : 2011.08.25

Abstract

Nanocrystalline cadmium sulphide (CdS) thin films were prepared using chemical bath deposition (CBD), and the structural, optical and photoconductive properties were investigated. The crystal structure of CdS thin film was studied by X-ray diffraction. The crystallite size, dislocation density and lattice constant of CBD CdS thin films were investigated. The dislocation density of CdS thin films initially decreases with increasing film thickness, and it is nearly constant over the thickness of 2,500 ${\AA}$. The dislocation density decreases with increasing the crystallite size. The Urbach energies of CdS thin films are obtained by fitting the optical absorption coefficient. The optical band gap of CdS thin films increases and finally saturates with increasing the lattice constant. The Urbach energy and optical band gap of the 2,900 A-thick CdS thin film prepared for 60 minutes are 0.24 eV and 2.83 eV, respectively. The activation energies of the 2,900 ${\AA}$-thick CdS thin film at low and high temperature regions were 14 meV and 31 meV, respectively. It is considered that these activation energies correspond to donor levels associated with shallow traps or surface states of CdS thin film. Also, the value of ${\gamma}$ was obtained from the light transfer characteristic of CdS thin film. The value of ${\gamma}$ for the 2,900 A-thick CdS thin film was 1 at 10 V, and it saturates with increasing the applied voltage.

Keywords

References

  1. P. K. Ghosh, S. Jana, U. N. Maity, and K. K. Chattopadhyay, Physica E 35, 178 (2006) [DOI: 10.1016/j.physe.2006.07.029].
  2. N. Romeo, A. Bosio, R. Tedeschi, A. Romeo, and V. Canevari, Sol. Energy Mater. Sol. Cells 58, 209 (1999) [DOI: 10.1016/s0927-0248(98)00204-9].
  3. A. Romeo, D. L. Batzner, H. Zogg, C. Vignali, and A. N. Tiwari, Sol. Energy Mater. Sol. Cells 67, 311 (2001) [DOI: 10.1016/s0927-0248(00)00297-x].
  4. T. Negami, Y. Hashimoto, and S. Nishiwaki, Sol. Energy Mater. Sol. Cells 67, 331 (2001) [DOI: 10.1016/s0927-0248(00)00300-7].
  5. D. Abou-Ras, G. Kostorz, A. Romeo, D. Rudmann, and A. N. Tiwari, Thin Solid Films 480-481, 118 (2005) [DOI: 10.1016/j.tsf.2004.11.033].
  6. V. Singh, B. P. Singh, T. P. Sharma, and R. C. Tyagi, Opt. Mater. 20, 171 (2002) [DOI: 10.1016/s0925-3467(02)00043-5].
  7. S. A. Al Kuhaimi, Vacuum 51, 349 (1998) [DOI: 10.1016/s0042-207x(98)00112-2].
  8. A. Podesta, N. Armani, G. Salviati, N. Romeo, A. Bosio, and M. Prato, Thin Solid Films 511-512, 448 (2006) [DOI: 10.1016/j.tsf.2005.11.069].
  9. S. A. Al Kuhaimi, Sol. Energy Mater. Sol. Cells 52, 69 (1998) [DOI: 10.1016/s0927-0248(97)00272-9].
  10. S. Mathew, P. S. Mukerjee, and K. P. Vijayakumar, Thin Solid Films 254, 278 (1995) [DOI: 10.1016/0040-6090(94)06257-l].
  11. O. Vigil, I. Riech, M. Garcia-Rocha, and O. Zelaya-Angel, J. Vac. Sci. Technol. A 15, 2282 (1997) [DOI: 10.1116/1.580735].
  12. I. Yu, T. Isobe, and M. Senna, Mater. Res. Bull. 30, 975 (1995) [DOI: 10.1016/0025-5408(95)00082-8].
  13. W. J. Danaher, L. E. Lyons, and G. C. Morris, Sol. Energy Mater. 12, 137 [DOI: 10.1016/0165-1633(85)90029-2].
  14. P. J. Sebastian, J. Campos, and P. K. Nair, Thin Solid Films 227, 190 (1993) [DOI: 10.1016/0040-6090(93)90038-q].
  15. A. J. Haider, A. M. Mousa, and S. M. H. Al-Jawad, J. Semicond. Technol. Sci. 8, 326 (2008). https://doi.org/10.5573/JSTS.2008.8.4.326
  16. N. R. Pavaskar, C. A. Menezes, and A. P. B. Sinha, J. Electrochem. Soc. 124, 743 (1977) [DOI: 10.1149/1.2133398].
  17. O. Zelaya-Angel, F. d. L. Castillo-Alvarado, J. Avendano-Lopez, A. Escamilla-Esquivel, G. Contreras-Puente, R. Lozada-Morales, and G. Torres-Delgado, Solid State Commun. 104, 161 (1997) [DOI: 10.1016/s0038-1098(97)00080-x],
  18. P. P. Hankare, A. D. Jadhav, V. M. Bhuse, A. S. Khomane, and K. M. Garadkar, Mater. Chem. Phys. 80, 102 (2003) [DOI: 10.1016/s0254-0584(02)00344-9].
  19. M. Thambidurai, N. Murugan, N. Muthukumarasamy, S. Vasantha, R. Balasundaraprabhu, and S. Agilan, Chalcogenide Lett. 6, 171 (2009).
  20. M. Sridharan, S. K. Narayandass, D. Mangalaraj, and H. C. Lee, Cryst. Res. Technol. 37, 964 (2002) [DOI: 10.1002/1521-4079(200209)37:9<964::aid-crat964>3.0.co;2-r].
  21. S. Prabahar and M. Dhanam, J. Cryst. Growth 285, 41 (2005) [DOI: 10.1016/j.jcrysgro.2005.08.008].
  22. S. Ilican, M. Caglar, and Y. Caglar, J. Opt. Adv. Mater. 9, 1414 (2007).
  23. F. Yakuphanoglu and M. Sekerci, Opt. Appl. 35, 209 (2005).
  24. A. E. Rakhshani and A. S. Al-Azab, J. Phys.: Condens. Matter 12, 8745 (2000) [DOI: 10.1088/0953-8984/12/40/316].
  25. A. Ates, M. A. Yildirim, M. Kundakci, and M. Yildirim, Chin. J. Phys. 45, 135 (2007).
  26. V. R. Shinde, T. P. Gujar, C. D. Lokhande, R. S. Mane, and S. H. Han, Mater. Chem. Phys. 96, 326 (2006) [DOI: 10.1016/j.matchemphys.2005.07.045].
  27. R. K. Nkum, A. A. Adimado, and H. Totoe, Mater. Sci. Eng., B 55, 102 (1998) [DOI: 10.1016/s0921-5107(98)00193-7].
  28. W.-D. Park, Trans. Electr. Electron. Mater. 11, 170 (2010) [DOI: 10.4313/TEEM.2010.11.4.170].
  29. A. Dahshan, H. H. Amer, A. H. Moharam, and A. A. Othman, Thin Solid Films 513, 369 (2006) [DOI: 10.1016/j.tsf.2006.01.062].
  30. M. Singh Kamboj, G. Kaur, and R. Thangaraj, Thin Solid Films 420-421, 350 (2002) [DOI: 10.1016/s0040-6090(02)00848-9].

Cited by

  1. Effect of the substrate temperature on the physical properties of sprayed-CdS films by using an automatized perfume atomizer vol.79, 2018, https://doi.org/10.1016/j.mssp.2018.01.018
  2. Laser-induced doping of aluminum into a cadmium telluride thin film: Electrical and optical properties vol.60, pp.3, 2012, https://doi.org/10.3938/jkps.60.425
  3. Optical and electrical properties of polyvinyl alcohol doped CdS nanoparticles prepared by sol–gel method vol.26, pp.5, 2015, https://doi.org/10.1007/s10854-015-2756-2