DOI QR코드

DOI QR Code

Effect of Boundary Temperature Distributions on the Outlet Gas Composition of the Cylindrical Steam Reformer

원통형 수증기 개질기의 경계 온도 분포에 따른 개질 가스 조성 변화

  • 김석 (한국과학기술원 기계공학과) ;
  • 한훈식 (한국과학기술원 기계공학과) ;
  • 김서영 (한국과학기술연구원) ;
  • 현재민 (한국과학기술원 기계공학과)
  • Received : 2011.02.07
  • Accepted : 2011.04.20
  • Published : 2011.06.10

Abstract

Numerical simulations have been conducted for the cylindrical steam reformer having various boundary temperature distributions. $CH_4$, $H_2O$, CO, $H_2$ and $CO_2$ are often generated or destroyed by the reactions, namely the Steam Reofrming(SR) reaction, the Water-Gas Shift (WGS) reaction and the Direct Steam Reforming(DSR) reaction. The SR and the DSR reactions are endothermic reactions, and the WGS reaction is an exothermic reaction. The rate of reactions can be slightly controlled by artificially given boundary temperature distributions. Therefore, the component ratio of the gases at the outlet are different for various boundary temperature distributions, namely the constant, cubic and linear distributions. Among these distributions, the linear temperature distribution is outstanding for efficient hydrogen production of the steam reformer.

Keywords

References

  1. Mathiak, J., Heinzel, A., Roes, J., Kalk, T., Kraus, H., and Brandt, H., 2004, Coupling of a 2.5 kW steam reformer with a 1 $kW_{el}$ PEM fuel cell, J. Power Sources, Vol. 131, No. 1-2, pp. 112-119. https://doi.org/10.1016/j.jpowsour.2004.01.024
  2. Park, J., Lee, S., Bae, J., and Kim, M., 2009, Numerical study on the performance and the heat flux of a coaxial cylindrical steam reformer for hydrogen production, KSME-B, Vol. 33, No. 9, pp. 709-717.
  3. Lee, S., Numerical analysis of fuel reforming systems for efficient hydrogen production, Doctoral Thesis, KAIST, Daejeon, Korea.
  4. Hoang, D. L., Chan, S. H. and Ding, O. L., 2005, Kinetic and modelling study of methane steam reforming over sulfide nickel catalyst on a gamma alumina support, Chem. Eng. J., Vol. 112, No. 1-3, pp. 1-11. https://doi.org/10.1016/j.cej.2005.06.004
  5. Xu, J. and Froment, G. F., 1989, Methane steam reforming, methanation and water-gas shift : I. Intrinsic kinetics, AIChEJ., Vol. 35, No. 1, pp. 88-96. https://doi.org/10.1002/aic.690350109
  6. Hoang, D. L. and Chan, S. H., 2004, Modeling of a catalytic autothermal methane reformer for fuel cell applications, Appl. Catal., A : General, Vol. 268, No. 1-2, pp. 207-216. https://doi.org/10.1016/j.apcata.2004.03.056
  7. Nield, D. A. and Bejan, A., 1992, Convection in porous media, Springer-Verlag, New York.
  8. Wakao, N., Kaguei, S. and Funazkri, T., 1979, Effect of fluid dispersion coefficients on particle- to-fluid heat transfer coefficients in packed beds : Correlation of Nusselt numbers, Chem. Eng. Sci., Vol. 34, No. 3, pp. 325-336. https://doi.org/10.1016/0009-2509(79)85064-2
  9. Puncochar, M. and Drahos, J., 1993, The tortuosity concept in fixed and fluidized bed, Chem. Eng. Sci., Vol. 48, No. 11, pp. 2173-2175. https://doi.org/10.1016/0009-2509(93)80092-5
  10. Todd, B. and Young, J. B., 2002, Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling, J. Power Sources, Vol. 110, No. 1-2, pp. 186-200. https://doi.org/10.1016/S0378-7753(02)00277-X
  11. Patankar, S. V., 1980, Numerical heat transfer and fluid flow, Hemisphere/Mcgraw-Hill, New York.
  12. Hayase, T., Humphrey, J. A. C. and Greif, R., 1992, A consistently formulated QUICK scheme for fast and stable convergence using finite- volume iterative calculation procedures, J. Comput. Phys., Vol. 98, pp. 108-118. https://doi.org/10.1016/0021-9991(92)90177-Z
  13. Stone, H. L., 1968, Iterative solution of implicit approximations of multidimensional partial differential equations, SIAM J. Numer. Anal., Vol. 5, No. 3, pp. 530-558. https://doi.org/10.1137/0705044

Cited by

  1. Performance Evaluation of a Cylindrical Steam Reformer with Various Thermal Conditions vol.26, pp.6, 2014, https://doi.org/10.6110/KJACR.2014.26.6.269