Effects of Sm:Ba:Cu Composition Ratio on the Superconducting Properties of SmBCO Coated Conductor Prepared by using a Composition Gradient Method

SmBCO 초전도 선재 특성에 대한 Sm:Ba:Cu 조성비의 영향

  • Kim, H.S. (Korea Electrotechnology Research Institute) ;
  • Oh, S.S. (Korea Electrotechnology Research Institute) ;
  • Jang, S.H. (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Min, C.H. (Korea Electrotechnology Research Institute) ;
  • Ha, H.S. (Korea Electrotechnology Research Institute) ;
  • Ha, D.W. (Korea Electrotechnology Research Institute) ;
  • Ko, R.K. (Korea Electrotechnology Research Institute) ;
  • Youm, D.J. (Department of Physics, Korea Advanced Institute of Science and Technology) ;
  • Moon, S.H. (Superconductor, Nano & Advanced Materials Corporation) ;
  • Chung, K.C. (Korea Institute of Materials Science)
  • Received : 2011.06.28
  • Accepted : 2011.08.09
  • Published : 2011.08.31

Abstract

The effects of Sm:Ba:Cu composition ratio in SmBCO coated conductor on their superconducting properties were investigated. The SmBCO coated conductors were fabricated by reactive co-evaporation method using EDDC(Evaporation using Drum in Dual Chamber) system. In this system, we could obtain various samples with different composition ratios in a batch by the technique providing composition gradient at deposition zone. From the specimens prepared by EDDC system, we found that composition ratio is uniform parallel to the drum axis, but gradient along the circumferential direction of the drum. We installed a shield having parallelogram open area between the deposition chamber and the evaporation chamber in EDDC system, and attached a 30 cm long template, which is parallel to drum axis, onto the drum surface. In this configuration, we could obtain SmBCO coated conductors having a gradient composition along the length of template. We measured the composition ratios and surface morphologies with periodic interval by SEM and EDAX, and confirmed the profile of composition ratio. We also measured critical current using non-contact Hall probe critical current measurement system and thereby could plot composition ratio vs. critical current. The maximum critical current was obtained, and the surface morphology with the shape of roof tile was observed at the corresponding composition ratio of Sm:Ba:Cu = 1.01:1.99:4.87. It was also found that composition ratio had an effect on not only critical current but also surface morphology.

조성경사법을 이용하여 LMO/IBAD-MgO template 상에 EDDC 증착법을 이용하여 $Sm_{1+x}Ba_{2-x}Cu_{3+y}O_{7-d}$ 초전도 박막을 증착하였다. 테이프 형상의 기판상에 길이방향으로 $Sm_{1+x}Ba_{2-x}Cu_{3+y}O_{7-d}$ 박막의 조성비가 연속적으로 변하는 샘플을 얻을 수 있었고, 비접촉 Hallprobe를 이용하여 임계전류를 측정한 결과 조성비에 대응하는 연속적인 임계전류분포를 측정할 수 있었다. 본 조성비 영역 중 Sm:Ba:Cu = 1.01:1.99 :4.87의 조성비에서 최대의 임계전류를 보였다. 이 조성비에서 SmBCO 박막표면에 전체적으로 roof tile 형상의 결정립들이 관찰되었으며 국소적으로 2차상들이 관찰되었다. 조성 경사법을 이용하면 광범위한 조성비영역에서 신뢰도 높은 초전도특성, 결정배향성, 박막표면 형상 등을 조사할 수 있을 것으로 예상된다.

Keywords

References

  1. D.P. Norton, A. Goyal, J.D. Budai, D.K. Christen, D.M. Kroeger, E.D. Specht, Q. He, B. Saffian, M. Paranthman, C.E. Klabunde, D.F. Lee, B.C. Sales, F.A. List, Science 274 (1996) 755. https://doi.org/10.1126/science.274.5288.755
  2. A. Goyal, D.P. Norton, J.D. Budai, M. Paranthaman, E.D. Specht, D.M. Kroeger, D.K. Christen, Q. He, B. Saffian, F.A. List, D.F. Lee, P.M. Martin, C.E. Klabunde, E.Hartfield, V.K. Sikka, Appl. Phys. Lett. 69 (1996) 1795. https://doi.org/10.1063/1.117489
  3. Y. Shiohara, Y. Kitoh, T. Izumi, Physica C 445-448 (2006) 496. https://doi.org/10.1016/j.physc.2006.04.043
  4. V. Selvamanickam, Y. Chen, X. Xiong, Y. Xie, X. Zhang, Y. Qiao, J. Reeves, A. Rar, R. Schmidt, K. Lenseth, Physica C 463-465 (2007) 482. https://doi.org/10.1016/j.physc.2007.04.236
  5. K.P. Ko, H.S. Ha, H.K. Kim, K.K. Yu, R.K. Ko, S.H. Moon, S.S. Oh, C. Park, S.I. Yoo, Physica C 463-465 (2007) 564. https://doi.org/10.1016/j.physc.2007.01.043
  6. Y. Shiohara, M. Yoshizumi, T. Izumi, Y. Yamada, Physica C 463-465 (2007) 1. https://doi.org/10.1016/j.physc.2007.04.224
  7. H.S. Kim, H.S. Ha, T.H. Kim, J.S. Yang, R.K. Ko, K.J. Song, D.W. Ha, N.J. Lee, S.S. Oh, D.J. Youm, Chan Park, Physica C 460-462 (2007) 1361. https://doi.org/10.1016/j.physc.2007.04.040
  8. M. Itoh, K. Sudoh, Y. Ichino, Y. Yoshida, Y. Takai, Physica C 392-396 (2003) 1265. https://doi.org/10.1016/S0921-4534(03)00781-0