Studies on Membrane Fouling Monitoring by Fluorescence Nano Particle and Fluorescent Spectrometry

형광 나노 입자 및 형광 분광 분석을 이용한 막오염 측정법 연구

  • Seo, Mi-Rae (Environment & Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Nam, Mi-Yeon (R&D Institute, Woongjin Chemical Co., Ltd.) ;
  • Kim, Beom-Sik (Environment & Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Nam, Seung-Eun (Environment & Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, In-Chul (Environment & Resources Research Center, Korea Research Institute of Chemical Technology) ;
  • Park, You-In (Environment & Resources Research Center, Korea Research Institute of Chemical Technology)
  • 서미래 (한국화학연구원 환경자원연구센터) ;
  • 남미연 (웅진케미칼 기술연구소) ;
  • 김범식 (한국화학연구원 환경자원연구센터) ;
  • 남승은 (한국화학연구원 환경자원연구센터) ;
  • 김인철 (한국화학연구원 환경자원연구센터) ;
  • 박유인 (한국화학연구원 환경자원연구센터)
  • Received : 2011.05.13
  • Accepted : 2011.06.21
  • Published : 2011.06.30

Abstract

Membrane fouling control in water treatment may be the main obstacle for wider implementation and lower cost. A novel fluorescent spectroscope sensor device for membrane fouling integrity monitoring has been developed and evaluated in this study. PSf membranes for water treatment has been fabricated with three types of organic fluorescent materials, OB, FP, KCB. The fluorescent signal from membrane surface was analyzed throughout the filtration process. It was found that the fluorescent signal due to the membrane fouling decreased and the developed device is reliable for membrane fouling monitoring.

수처리 분리막 공정에서 막 오염 제어 기술은 현장 적용 기술 및 경제성 확보에 있어 매우 중요하다. 본 연구에서는 형광 나노 입자 및 형광 분광 분석법을 도입함으로써 수처리 분리막 공정에서 막 오염 정도를 실시간으로 측정 모니터링 할 수 있는 센싱 기술을 개발하고자 하였다. 막 오염 정도를 모니터링 할 수 있는 분리막 제조를 위해 세 종류의 형광물질 OB, FP, KCB를 담지한 다공성 polysulfone (PSf) 비대칭 막을 제조하였다. 형광 분광 분석 시스템을 이용하여 분리막 표면에서의 오염 정도를 실시간으로 측정한 결과, 형광 물질을 첨가한 막은 막 오염이 진행됨에 따라 형광 신호가 크게 감소함을 보여 막 표면 오염층의 모니터링 분석이 가능함을 확인하였다.

Keywords

References

  1. J. C. Chen, Q. Li, and M. Elimelech, "In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration", Adv. Colloid Interface Sci., 107, 83 (2004). https://doi.org/10.1016/j.cis.2003.10.018
  2. L. J. Zeman and A. L. Zydney, "Microfiltration and Ultrafiltration: Principles and Applications", Marcel Dekker, New York (1996).
  3. M. G. van der Waal and I. G. Racz, "Mass transfer in corrugated-plate membrane modules. I. Hyperfiltration experiments", J. Membr. Sci., 40, 243 (1989). https://doi.org/10.1016/0376-7388(89)89008-8
  4. R. van Reis, S. Gadam, L. N. Frautschy, S. Orlando, E. M. Goodrich, S. Saksena, R. Kuriyel, C. M. Simpson, S. Pearl, and A. L. Zydney, "High performance tangential flow filtration", Biotechnol. Bioeng., 56, 71 (1997). https://doi.org/10.1002/(SICI)1097-0290(19971005)56:1<71::AID-BIT8>3.0.CO;2-S
  5. G. Belfort, R. H. Davis, and A. L. Zydney, "The behavior of suspensions and macromolecular solutions in crossflow microfiltration", J. Membr. Sci., 96, 1 (1994). https://doi.org/10.1016/0376-7388(94)00119-7
  6. G. B. van den Berg, and C. A. Smolders, "Flux decline in ultrafiltration processes", Desalination, 77, 101 (1990). https://doi.org/10.1016/0011-9164(90)85023-4
  7. V. L. Vilker, C. K. Colton, and K. A. Smith, "Concentration polarization in protein ultrafiltration. Part II: theoretical and experimental study of albumin ultrafiltered in batch cell", AIChE. J., 27, 637 (1981). https://doi.org/10.1002/aic.690270416
  8. L. F. Song, "Flux decline in crossflow micro-filtration and ultrafiltration-mechani는 and modeling of membrane fouling", J. Membr. Sci., 139, 183 (1998). https://doi.org/10.1016/S0376-7388(97)00263-9
  9. E. S. Tarleton and R. J. Wakeman, "Understanding flux decline in crossflow microfiltration. 1. Effects of particle and pore size", Chem. Eng. Res. Des., 71(A4), 399 (1993).
  10. R. S. Faibish, M. Elimelech, and Y. Cohen, "Effect of interparticle electrostatic double layer interations on permeate flux decline in crossflow membrane filtration of colloidal suspensions-an experimental investigation", J. Colloid Interface Sci., 204, 77 (1998). https://doi.org/10.1006/jcis.1998.5563
  11. T. Eighmy, D. Maratea, and P. L. Bishop, "Electron microscopic examination of wastewater biofilm formation and structural components", Appl. Environ. Microbiol., 45(6), 1921 (1983).
  12. W. Chan, D. J. Maxwell, X. Gao, R. E. Bailey, M. Han, and S. Nie, "Luminescent quantum dots for multiplexed biological detection and imaging", Curr. Opin. Biotechnol., 13, 40 (2002). https://doi.org/10.1016/S0958-1669(02)00282-3
  13. M. Y. Han, X. Gao, J. Z. Su, and S. M. Nle, "Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules", Nat. Biotechnol., 19, 631 (2001). https://doi.org/10.1038/90228
  14. T. J. Deerinck, "The application of fluorescent quantum dots to confocal, multiphoton, and electron microscopic imaging", Toxicol. Pathol., 36, 112, (2008). https://doi.org/10.1177/0192623307310950
  15. H. Manen and C. Otto, "Hybrid confocal raman fluorescence microscopy on single cells using semiconductor quantum dots", Nano Lett., 7(6), 1631 (2007). https://doi.org/10.1021/nl0705945
  16. M. E. Davis, Z. Chen, and D. M. Shin, "Nanoparticle therapeutics: an emerging treatment modality for cancer", Nat. Rev. Drug Discovery, 7, 771 (2008). https://doi.org/10.1038/nrd2614