Synthesis of Porous $TiO_2$ Thin Films Using PVC-g-PSSA Graft Copolymer and Their Use in Dye-sensitized Solar Cells

PVC-g-PSSA 가지형 공중합체를 이용한 다공성 $TiO_2$ 박막의 합성 및 염료감응 태양전지 응용

  • Byun, Su-Jin (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Seo, Jin-Ah (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Chi, Won-Seok (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Shul, Yong-Gun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong-Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 변수진 (연세대학교 화공생명공학과) ;
  • 서진아 (연세대학교 화공생명공학과) ;
  • 지원석 (연세대학교 화공생명공학과) ;
  • 설용건 (연세대학교 화공생명공학과) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2011.04.27
  • Accepted : 2011.06.24
  • Published : 2011.06.30

Abstract

An amphiphilic graft copolymer comprising a poly(vinyl chloride) (PVC) backbone and poly (styrene sulfonic acid) (PSSA) side chains (PVC-g-PSSA) was synthesized via atom transfer radical polymerization (ATRP). Mesoporous titanium dioxide $(TiO_2)$ films with crystalline anatase phase were synthesized via a sol-gel process by templating PVC-g-PSSA graft copolymer. Titanium isopropoxide (TTIP), a $TiO_2$ precursor was selectively incorporated into the hydrophilic PSSA domains of the graft copolymer and grew to form mesoporous $TiO_2$ films, as confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The performances of dye-sensitized solar cell (DSSC) were systematically investigated by varying spin coating times and the amounts of P25 nanoparticies. The energy conversion efficiency reached up to 2.7% at 100 mW/$cm^2$ upon using quasi-solid-state polymer electrolyte.

원자전달 라디칼 중합(ATRP)에 의해 poly(vinyl chloride) (PVC) 주사슬과 poly(styrene sulfonic acid) (PSSA) 곁사슬로 되어있는 양쪽성 PVC-g-PSSA 가지형 공중합체를 합성하였다. PVC-g-PSSA 가지형 공중합체 고분자를 템플레이트로 사용하고 졸겔법을 적용하여, 결정성 아타네제상의 미세기공 이산화티타튬 필름을 제조하였다. $TiO_2$ 전구체인 TTIP를 친수성인 PSSA 영역과 선택적으로 작용시켜 $TiO_2$ 메조기공 필름을 성장하였으며, 이를 주사전자 현미경 (SEM)과 엑스레이회절 (XRD)분석을 통해 분석하였다. 스핀코팅 횟수와 P25 도입에 따른 염료감응 태양전지 성능을 체계적으로 분석하였다. 그 결과 준고체 고분자 전해질을 이용하였을 때, 100 mW/$cm^2$ 조건에서 에너지 변환 효율이 2.7%에 이르렀다.

Keywords

References

  1. N. Yoshimoto, O. Shimamura, T. Nishimura, M. Egashira, M. Nichioka, and M. Morita, "A novel polymeric electrolyte based on a copolymer containing self-assembled stearylate moiety for lithium-ion batteries", Electrochem. Commun., 11, 481 (2009). https://doi.org/10.1016/j.elecom.2008.12.030
  2. J. Lee, Y. Kim, and E. Kim, "Electrochromic Property of a Conductive Polymer Film Fabricated with Vapor Phase Polymerization", Membrane Journal, 20, 8 (2010)
  3. B. L. Langsdorf, J. Sultan, and P. G. Pickup, "Partitioning and polymerization of pyrrole into perfluorosulfonate (Nafion) membranes under neutral conditions", J. Phys. Chem. B, 107, 8412 (2003). https://doi.org/10.1021/jp035210n
  4. H. Ko, J. Park, J. Choi, S. U. Kim, H. J. Kim, and Y. T. Hong, "Double-layered polymer electrolyte membrane based on sulfonated poly(aryl ether sulfone)s for direct methanol fuel cells", Membrane Journal, 19, 291 (2009).
  5. J. H. Kim, B. R. Min, J. Won, S. H. Joo, H. S. Kim, and Y. S. Kang, "Role of polymer matrix in polymer/silver complexes for structure, interactions, and facilitated olefin transport", Macromolecules, 36, 6183 (2003). https://doi.org/10.1021/ma034314t
  6. T. Stergiopoulos, I. M. Arabatzis, G. Katsaros, and P. Falaras, "Binary polyethylene oxide/titania solidstate redox electrolyte for highly efficient nanocrystalline $TiO_2$ photoelectrochemical cells", Nano Lett., 2, 1259 (2002). https://doi.org/10.1021/nl025798u
  7. M.-J. Choi, C.-H. Shin, T. Kang, J.-K. Koo, and N. Cho, "A study on the organic/inorganic composite electrolyte membranes for dye sensitized solar cell", Membrane Journal, 18, 345 (2008).
  8. M. Wang, X. Xiao, X. Zhou, X. Li, and Y. Lin, "Investigation of PEO-imidazole ionic liquid oligomer electrolytes for dye-sensitized solar cells", Sol. Energy Mater. Sol. Cells, 91, 785 (2007). https://doi.org/10.1016/j.solmat.2007.01.009
  9. J. E. Kroeze, N. Hirata, L. Schmidt-Mende, C. Orizu, S. D. Ogier, K. Carr, M. Gratzel, and J. R. Durrant, "Parameters Influencing Charge Separation in Solid-State Dye-Sensitized Solar Cells Using Novel Hole Conductors", Adv. Fucnt. Mater., 16, 1832 (2006). https://doi.org/10.1002/adfm.200500748
  10. M. Wang, X. Xiao, X. Zhou, X. Li, and Y. Lin, "Investigation of PEO-imidazole ionic liquid oligomer electrolytes for dye-sensitized solar cells", Sol. Energy Mater. Sol. Cells, 91, 785 (2007). https://doi.org/10.1016/j.solmat.2007.01.009
  11. N. Yamanaka, R. Kawano, W. Kubo, N. Masaki, T. Kitamura, Y. Wada, M. Watanabe, and S. Yanagida, "Dye-Sensitized $TiO_2$ Solar Cells Using Imidazolium-Type Ionic Liquid Crystal Systems as Effective Electrolytes", J. Phys. Chem. B, 111, 4763 (2007). https://doi.org/10.1021/jp0671446
  12. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Gratzel, "A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte", Nature Mater., 2, 402 (2003). https://doi.org/10.1038/nmat904
  13. W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada, and S. Yanagida, "Quasi-solid-state dye-sensitized $TiO_2$ solar cells: effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine", J. Phys. Chem. B, 105, 12809 (2001). https://doi.org/10.1021/jp012026y
  14. G. D. Sharma, P. Suresh, M. S. Roy, and J. A. Mikroyannidis, "Effect of surface modification of $TiO_2$ on the photovoltaic performance of the quasi Solid state dye sensitized solar cells using a benzothiadiazole-based dye", J. Power Sources, 195, 3011 (2010). https://doi.org/10.1016/j.jpowsour.2009.10.106
  15. J. A. Mikroyannidis, M. M. Stylianakis, M. S. Roy, P. Suresh, and G. D. Sharma, "Synthesis, photophysics of two new perylene bisimides and their photovoltaic performances in quasi solid state dye sensitized solar cells", J. Power Sources, 194, 1171 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.002
  16. I. C. Flores, J. N. Freitas, C. Longo, M. A. Paoli, H. Winnischofer, and A. F. Nogueira, "Dye-sensitized solar cells based on $TiO_2$ nanotubes and a solid-state electrolyte", J. Photochem. Photobio. A: Chem., 189, 153 (2007). https://doi.org/10.1016/j.jphotochem.2007.01.023
  17. T. Kang, C. H. Shin, M.-J. Choi, J. K. Koo, and N. Cho, "A study on the ionic conducting characteristics of electrolyte membranes containing KI and I2 for dye sensitized solar cell", Membrane Journal, 20, 21 (2010).
  18. B. O'Reagan and M. Gratzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal $TiO_2$ films", Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  19. Y. Lee, J. Chae, and M. Kang, "Comparison of the photovoltaic efficiency on DSSC for nanometer sized $TiO_2$ using a conventional sol-gel and solvothermal methods", J. Ind. Eng. Chem., 16, 609 (2010). https://doi.org/10.1016/j.jiec.2010.03.008
  20. X. Hu, G. Li, and J. C. Yu, "Design, Fabrication, and Modification of Nanostructured Semiconductor Materials for Environmental and Energy Applications", Langmuir, 26, 3031 (2010). https://doi.org/10.1021/la902142b
  21. J. K. Choi, Y. W. Kim, J. H. Koh, and J. H. Kim, "Proton Conducting Membranes Based on Poly(vinyl chloride) Graft Copolymer Electrolytes", Polym. Adv. Technol., 19, 915 (2008). https://doi.org/10.1002/pat.1060
  22. S. H. Ahn, J. H. Koh, J. A. Seo, and J. H. Kim, "Structure control of organized mesoporous $TiO_2$ films templated by graft copolymers for dye-sensitized solar cells", Chem. Commun., 46, 1935 (2010). https://doi.org/10.1039/b919215h
  23. J. T. Park, D. K. Roh, R. Patel, E. Kim, D. Y. Ryu, and J. H. Kim, "Preparation of $TiO_2$ Spheres with Hierarchical Pores via Grafting Polymerization and Sol-gel Process for Dye-Sensitized Solar Cells", J. Mater. Chem., 20, 8521 (2010). https://doi.org/10.1039/c0jm01471k
  24. J. K. Koh, J. Kim, B. Kim, J. H. Kim, and E. Kim, "Highly Efficient Iodine-Free Dye-Sensitized Solar Cells with Solid-State Synthesis of Conducting Polymers", Adv. Mater., 23, 1641 (2011). https://doi.org/10.1002/adma.201004715
  25. N. Perkas, M. Shuster, G. Amirian, Y. Koltypin, and A. Gedanken, "Sonochemical immobilization of silver nanoparticles on porous polypropylene", J. Polym. Sci. A: Polym. Chem., 46, 1719 (2008). https://doi.org/10.1002/pola.22513
  26. A. Mokrini and J. L. Acosta, "Studies of sulfonated block copolymer and its blends", Polymer., 42, 9 (2001). https://doi.org/10.1016/S0032-3861(00)00353-0
  27. P. C. A. Alberius, K. L. Frindell, R. C. Hayward, E. J. Kramer, G. D. Stucky, and B. F. Chmelka, "General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films", Chem. Mater., 14, 3284, (2002). https://doi.org/10.1021/cm011209u
  28. P. Falaras, T. Stergiopoulos, and D. S. Tsoukleris, "Enhanced efficiency in solid-state dye-sensitized solar cells based on fractal nanostructured $TiO_2$ thin films", Small, 4, 770 (2008). https://doi.org/10.1002/smll.200700347