DOI QR코드

DOI QR Code

Identification and Transcriptional Analysis of Priming Genes in Arabidopsis thaliana Induced by Root Colonization with Pseudomonas chlororaphis O6

  • Cho, Song-Mi (Department of Floriculture, Chunnam Techno College) ;
  • Park, Ju-Yeon (Institute of Environmentally-Friendly Agriculture, Chonnam National University) ;
  • Han, Song-Hee (Institute of Environmentally-Friendly Agriculture, Chonnam National University) ;
  • Anderson, Anne J. (Department of Biology, Utah State University) ;
  • Yang, Kwang-Yeol (Institute of Environmentally-Friendly Agriculture, Chonnam National University) ;
  • Gardener, Brian Mcspadden (Institute of Environmentally-Friendly Agriculture, Chonnam National University) ;
  • Kim, Young-Cheol (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
  • Received : 2011.05.11
  • Accepted : 2011.07.21
  • Published : 2011.09.01

Abstract

Root colonization of Arabidopsis thaliana with Pseudomonas chlororaphis O6 induces systemic tolerance against diverse pathogens, as well as drought and salt stresses. In this study, we demonstrated that 11 genes in the leaves were up-regulated, and 5 genes were down-regulated as the result of three- to five-days root colonization by P. chlororaphis O6. The identified priming genes were involved in cell signaling, transcription, protein synthesis, and degradation. In addition, expression of selected priming genes were induced in P. chlororaphis O6-colonized plants subjected to water withholding. Genes encoding defense proteins in signaling pathways regulated by jasmonic acid and ethylene, such as VSP1 and PDF1.2, were additional genes with enhanced expression in the P. chlororaphis O6-colonized plants. This study indicated that the expression of priming genes, as well as genes involved in jasmonic acid- and ethylene-regulated genes may play an important role in the systemic induction of both abiotic and biotic stress due to root colonization by P. chlororaphis O6.

Keywords

References

  1. Almeras, E., Stolz, S., Vollenweider, S., Reymond, P., Mène-Saffrane, L. and Farmer, E. E. 2003. Reactive electrophile species activate defense gene expression in Arabidopsis. Plant J. 34:205-216. https://doi.org/10.1046/j.1365-313X.2003.01718.x
  2. Bartel, B. and Fink, G. R. 1994. Differential regulation of an auxin-producing nitrilase gene family in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 91:6649-6653. https://doi.org/10.1073/pnas.91.14.6649
  3. Bartling, D., Seedorf, M., Mithöfer, A. and Weiler, E. W. 1992. Cloning and expression of an Arabidopsis nitrilase which can convert indole-3-acetonitrile to the plant hormone, indole-3- acetic acid. Eur. J. Biochem. 205:417-424. https://doi.org/10.1111/j.1432-1033.1992.tb16795.x
  4. Bostock, R. M. 2005. Signal crosstalk and induced resistance: Staddling the line between cost and benefit. Annu. Rev. Phytopathol. 43:545-580. https://doi.org/10.1146/annurev.phyto.41.052002.095505
  5. Bowser, J. and Reddy, A. S. N. 1997. Localization of a kinesinlike calmodulin-binding protein in dividing cells of Arabidopsis and tobacco. Plant J. 12:1429-1438. https://doi.org/10.1046/j.1365-313x.1997.12061429.x
  6. Cartieaus, F., Thi, M.-C., Zimmerli, L., Lessard, P., Sarrobert, C., David, P., Derbaud, A., Robagliz, C., Somerville, S. and Nussaume, L. 2003. Transcriptome analysis of Arabidopsis colonized by a plant-growth promoting rhizobacterium reveals a general effect on disease resistance. Plant J. 36:177-188. https://doi.org/10.1046/j.1365-313X.2003.01867.x
  7. Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J. Y., Lee, Y. H., Cho, B. H., Yang, K. Y., Ryu, C. M. and Kim, Y. C. 2008. 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21:1067-1075. https://doi.org/10.1094/MPMI-21-8-1067
  8. Choi, D., Bostock, R. M., Avdiushko, S. and Hildebrand, D. F. 1994. Lipid-derived signals that discriminate wound- and pathogen-responsive isoprenoid pathways in plants: methyl jasmonate and fungal elicitor arachidonic acid induce different 3-hydroxy-3-methyglutaryl coenzyme A reductase genes and antimicrobial isoprenoids in Solanum tuberosum L. Proc. Natl. Acad. Sci. USA. 91:329-333.
  9. Conrath, U., Pieterse, C. M. and Mauch-Mani, B. 2002. Priming in plant-pathogen interactions. Trends Plant Sci. 7:210-216. https://doi.org/10.1016/S1360-1385(02)02244-6
  10. Durrant, W. E. and Dong, X. 2004. Systemic resistance in plants. Annu. Rev. Phytopathol. 42:185-209. https://doi.org/10.1146/annurev.phyto.42.040803.140421
  11. Eckardt, N. A. 2001. Auxin and the power of the proteasome in plants. Plant Cell 13: 2161-2163. https://doi.org/10.1105/tpc.13.10.2161
  12. Eyal, Y., Sagee, O. and Fluhr, R. 1992. Dark-induced accumulation of a basic pathogenesis-related (PR-1) transcript and a light requirement for its induction by ethylene. Plant Mol. Biol. 19:589-599. https://doi.org/10.1007/BF00026785
  13. Han, S. H., Lee, S. J., Moon, J. H., Park, K. H., Yang, K. Y., Cho, B. H., Kim, K. Y., Kim, Y. W., Lee, M. C., Anderson, A. J. and Kim, Y. C. 2006. GacS-depedent production of 2R,3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol. Plant-Microbe Interact. 19:924-930. https://doi.org/10.1094/MPMI-19-0924
  14. Heitz, T., Bergey, D. R. and Ryan, C. A. 1997. A gene encoding a chloroplast targeted lipoxygenase in tomato leaves is transiently induced by wounding, systemin, and methyl jasmonate. Plant Physiol. 114:1085-1093. https://doi.org/10.1104/pp.114.3.1085
  15. Hong, J. K., Lee, S. C. and Hwang, B. K. 2005. Activation of pepper basic PR-1 gene promoter during defense signaling to pathogen, abiotic and environmental stresses. Gene. 356:169-180. https://doi.org/10.1016/j.gene.2005.04.030
  16. Hwang, I. T., Kim, Y. J., Kim, S. H., Kwak, C. I., Gu, Y. Y. and Chun, J. Y. 2003. Annealing control primer system for improving specificity of PCR amplification. BioTechniques 35:1180-1184.
  17. Kang B. R., Yang, K. Y., Cho, B. H., Han, T. H., Kim, I. S., Lee, M. C., Anderson, A. J. and Kim, Y. C. 2006. Production of indole-3-acetic acid in the plant-beneficial strain Pseudomonas chlororaphis O6 is negatively regulated by the global sensor kinase GacS. Curr. Microbiol. 52:473-476. https://doi.org/10.1007/s00284-005-0427-x
  18. Kim, M. S., Cho, S. M., Kang, E. Y., Im, Y. J., Hwangbo, H., Kim, Y. C., Ryu, C.-M., Yang, K. Y., Chung, G. C. and Cho, B. H. 2008. Galactinol is a signaling component of the induced systemic resistance caused by Pseudomonas chlororaphis O6 root colonization. Mol. Plant-Microbe Interact. 21:1643-1653. https://doi.org/10.1094/MPMI-21-12-1643
  19. Kim, M. S., Kim, Y. C. and Cho, B. H. 2004a. Gene expression analysis in cucumber leaves primed by root colonization with Pseudomonas chlororaphis O6 upon challenge-inoculation with Corynespora cassiicola. Plant Biol. 6:105-108. https://doi.org/10.1055/s-2004-817803
  20. Kim, Y. C., Leveau, J., Gardener, B. B. M., Pierson, E. A., Pierson III, L. S. and Ryu, C. M. 2011. The multifactorial basis for plant health promotion by plant-associated bacteria. Appl. Environ. Microbiol. 77:1548-1555. https://doi.org/10.1128/AEM.01867-10
  21. Kim, Y. J., Kwak, C. I., Gu, Y. Y., Hwang, I. T. and Chun, J. Y. 2004b. Annealing control primer system for identification of differentially expressed genes on agarose gels. BioTechniques 36: 424-426.
  22. Koizumi, M., Yamaguchi-Shinozaki, K., Tsuji, H. and Shinozaki, K. 1993. Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana. Gene 129:175-182. https://doi.org/10.1016/0378-1119(93)90266-6
  23. Lin, C. and Thomashow, M. F. 1992. DNA sequence analysis of a complementary DNA for cold-regulated Arabidopsis gene cor15 and characterization of the COR15 polypeptide. Plant Physiol. 99:519-525. https://doi.org/10.1104/pp.99.2.519
  24. Livak, J. K. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2-^{{\Delta}{\Delta}CT}$ method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  25. Pieterse, C. M. J. and Van Loon, L. C. 2004. NPR1; the spider in the web of induced resistance signaling pathways. Curr. Opin. Plant Biol. 7: 456-464. https://doi.org/10.1016/j.pbi.2004.05.006
  26. Potter, S., Uknes, S., Lawton, K., Winter, A. M., Chandler, D., DiMaio, J., Novitzky, R., Ward, E. and Ryals, J. 1993. Regulation of a hevein-like gene in Arabidopsis. Mol. Plant-Microbe Interact. 6:680-685. https://doi.org/10.1094/MPMI-6-680
  27. Polverari, A., Molesini, B., Pezzotti, M., Buonaurio, R., Marte, M. and Delledonne, M. 2003. Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 12:1094-1105.
  28. Reddy, V. S., Day, I. S., Thomas, T. and Reddy, A. S. N. 2004. KIC, a novel $Ca^{2+}$ binding protein with one EF-hand motif, interacts with a microtubule motor protein and regulates trachoma morphogenesis. Plant Cell 16:185-200. https://doi.org/10.1105/tpc.016600
  29. Ryu, C. M., Kang, B. R., Han, S. H., Cho, S. M., Kloepper, J. W., Anderson, A. J. and Kim, Y. C. 2007. Tobacco cultivar variability in induction of systemic resistance against Cucumber mosaic virus and growth promotion by Pseudomonas chlororaphis O6 and its gacS mutant. Eur. J. Plant Pathol. 119:383-390. https://doi.org/10.1007/s10658-007-9168-y
  30. Sarosh, B. R., Danielsson, J. and Meijer, J. 2009. Transcript profiling of oilseed rape (Brassica napus) primed for biocontrol differentiate genes involved in microbial interactions with beneficial Bacillus amyloliquefaciens from pathogenic Botrytis cinerea. Plant Mol. Biol. 70:31-45. https://doi.org/10.1007/s11103-009-9455-4
  31. Smirnova, E., Reddy, A. S. N., Bowser, J. and Bajer, A. S. 1998. A minus end-directed kinesin-like motor protein, KCBP, localizes to anaphase spindle poles in Haemanthus endosperm. Cytoskeleton 41:271-280. https://doi.org/10.1002/(SICI)1097-0169(1998)41:3<271::AID-CM8>3.0.CO;2-W
  32. Spencer, M., Ryu, C. M., Yang, K. Y., Kim, Y. C., Kloepper, J. W. and Anderson, A. J. 2003. Induced defence in tobacco by Pseudomonas chlororaphis strain O6 involves at least the ethylene pathway. Physiol. Mol. Plant Pathol. 63:27-34. https://doi.org/10.1016/j.pmpp.2003.09.002
  33. Suhita, D., Raghavendra, A. S., Kwak, J. M. and Vavasseur, A. 2004. Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol. 134:1536-1545. https://doi.org/10.1104/pp.103.032250
  34. Thaler, J. S., Fidantsef, A. L. and Bostock, R. M. 2002. Antagonism between jasmonate- and salicylate-mediated induced plant resistance: effects of concentration and timing of elicitation on defense-related proteins, herbivore, and pathogen performance in tomato. J. Chem. Ecol. 28:1131-1159. https://doi.org/10.1023/A:1016225515936
  35. Van Loon, L. C., Rep, M. and Pieterse, C. M. J. 2006. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44:135-162. https://doi.org/10.1146/annurev.phyto.44.070505.143425
  36. Van Wees, S. C. M., Luijendijk, M., Smoorenburg, I., van Loon, L. C. and Pieterse, C. M. J. 1999. Rhizobacteira-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression on known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Mol. Biol. 41:537-549. https://doi.org/10.1023/A:1006319216982
  37. Verhagen, B. W. M., Glazebrook, J., Zhu, T., Chang, H.-S., van Loon, L. C. and Pieterse, C. M. J. 2004. The trancriptome of rhizoctonia-induced systemic resistance in Arabidopsis. Mol. Plant-Microbe Interact. 17:895-908. https://doi.org/10.1094/MPMI.2004.17.8.895
  38. Vos, J. W., Safadi, F., Reddy, A. S. and Hepler, P. K. 2000. The kinesin- like calmodulin binding protein is differentially involved in cell division. Plant Cell 12:979-990. https://doi.org/10.1105/tpc.12.6.979
  39. Wilhelm, K. S. and Thomashow, M. F. 1993. Arabidopsis thaliana cor15b, an apparent homologue of cor15a, is strongly responsive to cold and ABA, but not drought. Plant Mol. Biol. 23:1073-1077. https://doi.org/10.1007/BF00021822
  40. Yamaguchi-Shinozaki, K., Koizumi, M., Urao, S. and Shinozaki, K. 1992. Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol. 33:217-224. https://doi.org/10.1093/oxfordjournals.pcp.a078243
  41. Zhang, H., Kim, M.-S., Krishnamachari, V., Payton, P., Sun, Y., Grimson, M., Farag, M. A., Ryu, C.-M., Allen, R., Melo, I. S. and Pare, P. W. 2007. Rhizobacteria volatile emissions regulate auxin homeostatis and cell expansion in Arabidopsis. Planta 226:839-851. https://doi.org/10.1007/s00425-007-0530-2

Cited by

  1. Transcriptome profiling of genes involved in induced systemic salt tolerance conferred by Bacillus amyloliquefaciens FZB42 in Arabidopsis thaliana vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-11308-8
  2. Induced Systemic Drought and Salt Tolerance by Pseudomonas chlororaphis O6 Root Colonization is Mediated by ABA-independent Stomatal Closure vol.28, pp.2, 2012, https://doi.org/10.5423/PPJ.2012.28.2.202
  3. Whole-transcriptome sequence analysis of differentially expressed genes in Phormium tenax under drought stress vol.7, 2017, https://doi.org/10.1038/srep41700
  4. Nitric Oxide and Hydrogen Peroxide Production are Involved in Systemic Drought Tolerance Induced by 2R,3R-Butanediol in Arabidopsis thaliana vol.29, pp.4, 2013, https://doi.org/10.5423/PPJ.OA.07.2013.0069
  5. Isolation and Characterization of Oligotrophic Bacteria Possessing Induced Systemic Disease Resistance against Plant Pathogens vol.28, pp.1, 2012, https://doi.org/10.5423/PPJ.NT.11.2011.0218
  6. Lipidomics Unravels the Role of Leaf Lipids in Thyme Plant Response to Drought Stress vol.18, pp.10, 2017, https://doi.org/10.3390/ijms18102067
  7. Seed Dormancy Involves a Transcriptional Program That Supports Early Plastid Functionality during Imbibition vol.7, pp.2, 2018, https://doi.org/10.3390/plants7020035
  8. Plant growth-promoting rhizobacterium Pseudomonas PS01 induces salt tolerance in Arabidopsis thaliana vol.12, pp.1, 2019, https://doi.org/10.1186/s13104-019-4046-1