Emission Detection of Mercuric Ions in Aqueous Media Based-on Dehybridization of DNA Duplexes

Byul Nim Oh, Qiong Wu, Mi Sun Cha, Hee Kyung Kang, Jin Ah Kim, Ka Young Kim, Eswaran Rajkumar, and Jinheung Kim^{*}

Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea. *E-mail: jinheung@ewha.ac.kr Received June 8, 2011, Accepted July 12, 2011

To quantify the presence of mercuric ions in aqueous solution, double-stranded DNA (dsDNA) of poly(dT) was employed using a light switch compound, Ru(phen)₂(dppz)²⁺ (1) which is reported to intercalate into dsDNA of a right-handed B-form. Addition of mercuric ions induced the dehybridization of poly(dT)·poly(dA) duplexes to form a hairpin structure of poly(dT) at room temperature and the metal-to-ligand charge transfer emission derived from the intercalation of 1 was reduced due to the dehybridization of dsDNA. As the concentration of Hg²⁺ was increased, the emission of 1 progressively decreased. This label-free emission method had a detection limit of 0.2 nM. Other metal ions, such as K⁺, Ag⁺, Ca²⁺, Mg²⁺, Zn²⁺, Mn²⁺, Co²⁺, Ni²⁺, Cu²⁺, Cd²⁺, Cr³⁺, Fe³⁺, had no significant effect on reducing emission. This emission method can differentiate matched and mismatched poly(dT) sequences based on the emission intensity of dsDNA.

Key Words : Metal-to-ligand transfer emission, DNA intercalation, Poly(dT), Mercuric ion sensing, Light switch Ru compound, Mismatch detection

Introduction

Mercuric ions are a highly toxic and acts as severe environmental pollutant that have serious medical effects on human beings.¹⁻³ While solvated mercuric ions in aqueous media are caustic and carcinogenic with high cellular toxicity, methyl mercury which is produced by microbial biomethylation of mercuric ions can accumulate in the human body through the food chain and cause serious and permanent brain damage and other chronic diseases.⁴⁻⁶ It is also important to control the leakage of mercuric ions from amalgam fillings during dental care.⁷ Therefore, routine detection of Hg²⁺ with high sensitivity and selectivity is central to the environmental monitoring of river, sewage, etc., and for evaluating the safety of food supplies.8-11 Several photoemission methods for the detection of Hg^{2+} have been developed based on organic molecules,8,12-17 oligonucleotides,^{18,19} proteins,²⁰ and conjugated polymers.^{21,22} Although some sensors displayed a high enough sensitivity and selectivity for detection of mercuric ions in aqueous solution, the preparation and operation of these devices were quite needy and these sensors could not be easily operated onsite for real-time detection as well as quantification. Therefore, simple assay methods with respect to sensitivity and selectivity with aqueous environments are still needed for routine and real-time mercury detection.

Oligonucleotides provided a charming methodology for Hg²⁺ sensing in aqueous solution. DNA-based detection systems can be used for this purpose since Hg²⁺ has been shown to specifically coordinate to two DNA thymine bases (T) and stabilize T–T mismatches in DNA duplexes.^{18,23-30} Thymine-rich nucleic acids separated by a spacer and tethered with fluorophore/quencher units at their ends were

developed to analyze Hg^{2^+} ions by the ion-induced formation of a hairpin structure, yielding an intramolecular fluorescence resonance energy transfer process.¹⁹ Recently, DNAgold nanoparticles (AuNPs) were used for the detection of Hg^{2^+} through colorimetric methods as AuNPs have unique extinction coefficients.^{25,29,30} The colorimetric detection method for Hg^{2^+} using T- Hg^{2^+} -T coordination and Au nanoparticles had a limit of detection close to 100 nM; however, this sensor required thiolated oligonucleotides and an additional step to prepare the DNA-AuNP aggregates.²⁹ Another different method was reported based on Hg^{2^+} -induced aggregation of AuNPs of which surface was stabilized by a singlestranded thymine-rich DNA strand.²⁵

Polypyridine ruthenium complexes and their interactions with oligonucleotides have been extensively studied due to their interesting properties derived from emission via metalto-ligand charge transfer (MLCT). Especially, Ru(phen)2- $(dppz)^{2+}$ (1) (phen = 1,10-phenanthroline, dppz = dipyrido-[3,2-a:2',3'-c]phenazine) which selectively intercalates into the right-handed B-form double-stranded DNA, has been frequently used to study electron transfer through DNA duplexes and to analyze DNA by utilizing the emission enhancement when 1 was intercalated within the base pairs of DNA duplexes.³¹⁻³³ Recently, we developed a label-free assay for potassium ions and target oligonucleotides containing single-base mismatches using a K⁺-specific aptamer and Ru(phen)₂(dppz)^{2+.34} Here, we introduce a new homogeneous assay using double-stranded poly(dT)/poly(dA) utilizing the intercalation property of 1 for the selective and sensitive assay of mercuric ions using the metal ion-induced formation of a hairpin structure. Using this approach, the amount of 1 intercalated into double-stranded DNA can be used to quantify the mercuric ion concentration since dsDNA is dehybridized and converted to the hairpin structure in the presence of mercuric ions. In addition, the decreasing rates of emission by dehybridization allowed us to differentiate matched and mismatched sequences. The high sensitivity of 0.2 nM was obtained due to the use of the strong emission enhancement because several molecules of 1 can be intercalated into dsDNA.

Results and Discussion

The coordination compound Δ -Ru(phen)₂(dppz)²⁺ (1) has been reported to intercalate among alternate base pairs double-stranded nucleic acids (dsDNA).^{32,33,35,36} Upon intercalation of 1 into dsDNA, a strong MLCT emission occurring in the hydrophobic environment is generated relative to no emission of 1 alone in aqueous solution. In this study, dsDNA prepared with 22-mer oligonucleotides, poly(dT)₂₂ (T_{22}) and poly(dA)₂₂ (A₂₂), was used to detect mercuric ions through the emission measurements (Figure 1). When 0.10 $\mu M T_{22} \cdot A_{22}$ was treated with 4.0 $\mu M 1$ in Na-phosphate buffer (pH = 7.0), a strong emission enhancement was observed (Figure 2). Since 1 is reported to intercalate into the alternate base pairs of dsDNA, the emission intensity obtained with 40 equiv 1 corresponds to the maximum which can be obtained with T_{22} · A_{22} . A hairpin structure of T₂₂ was then generated from T₂₂ upon treatment with 50 equiv Hg²⁺. The emission intensity in the presence of the hairpin structure generated in the presence of Hg²⁺ was drastically lower than with T_{22} · A_{22} . When T_{22} · A_{22} was treated and incubated with 50 equiv Hg²⁺ for 10 min at room temperature, the emission intensity of 1 also was reduced rapidly relative to that obtained with T22:A22 alone. The emission intensity obtained with T₂₂·A₂₂ and Hg²⁺ was close

 A22
 5' -AAA AAA AAA AAA AAA AAA AAA AAA AAA

 T22
 5'-TTT TTT TTT TTT TTT TTT TTT TTT

 T21G
 5'-TTT TTT TTT TGT TTT TTT TTT TTT T

- $T_{21}A \quad 5\text{'-} \text{ TTT} \text{ TTT} \text{ TTT} \text{ TAT} \text{ TTT} \text{ TTT} \text{ T}$

Figure 1. Sequences of the oligonucleotides used in this study, and a schematic representation of label-free fluorescent detection of mercuric ions using dsDNA and Δ -Ru(phen)₂(dppz)²⁺ (1).

Figure 2. Emission spectra ($\lambda_{ex} = 480 \text{ nm}$) of **1** (4.0 μ M) for 0.10 iM T₂₂·A₂₂ (---), 0.10 μ M T₂₂ (---), and 0.10 μ M T₂₂·A₂₂ treated with 10 equiv Hg²⁺ (...) in 10 mM phosphate buffer (pH = 7.0) at room temperature.

to that obtained with the hairpin structure of T_{22} generated from T_{22} upon treatment with 10 equiv Hg^{2+} . As a control experiment, G_{22} · C_{22} was used in place of T_{22} · A_{22} under the same conditions. Interestingly, the emission intensity of **1** with G_{22} · C_{22} alone was much lower than that with T_{22} · A_{22} and the intensity changed slightly upon treatment with 10 equiv Hg^{2+} to G_{22} · C_{22} (Figure 3). For another control experiment, ethidium bromide which is also a well known DNAintercalating agent was tested instead of **1** in the same assay with T_{22} · A_{22} , but such significant emission changes were not observed in the treatment with Hg^{2+} under the same reaction conditions (Figure 4).

The emission spectra of the $1-T_{22}\cdot A_{22}$ sensing system were obtained at different Hg²⁺ concentrations (Figure 5(a)). The emission intensity of 1 decreased at increasing Hg²⁺ concentrations. The emission almost disappeared at about 50 equiv Hg²⁺, indicating that the 50 equiv is required to afford the full formation of the hairpin conformation of T₂₂ from the dehybridization of T₂₂·A₂₂ through T-Hg²⁺-T coordination. The calibration curve corresponding to the emission changes

Figure 3. Emission spectra of **1** in the presence of 0.10 μ M G₂₂·C₂₂ without and with 10 equiv Hg²⁺ in phosphate buffer (pH = 7.0). These emission spectra were plotted together with that of T₂₂·A₂₂ for comparison.

Emission Detection of Mercuric Ions in Aqueous Media Based-on

Figure 4. Emission emission spectra ($\lambda_{ex} = 510 \text{ nm}$) of ethidium bromide in the presence of 0.10 μ M T₂₂·A₂₂ (solid) and 0.10 μ M T₂₂·A₂₂ treated with 10 equiv Hg²⁺ (dotted).

Figure 5. (a) Emission spectra of **1** at different concentrations of Hg^{2+} in the presence of T_{22} · A_{22} (0.10 μ M) in 10 mM phosphate buffer. (b) Plot of intensity against the concentration of Hg^{2+} . Samples were analyzed at 615 nm ($\lambda_{ex} = 480$ nm).

in the sensing system at different Hg²⁺ concentrations is shown in Figure 5(b). Thus, the difference in emission intensity of **1** upon addition of Hg²⁺ could be used to measure Hg²⁺ at concentrations ranging from 1 nM to 50 μ M which is the widest range among the Hg²⁺-sensing methods reported ever. The detection limit of the sensor using T₂₂·A₂₂ was about 0.2 nM.

Figure 6. (a) Circular dichroism spectra of 1.0 μ M T₂₂·A₂₂, T₂₂·A₂₂ treated with 50 equiv Hg²⁺, and the mixture of A₂₂ and the hairpin structure prepared with T₂₂ and 50 equiv Hg²⁺ in 10 mM phosphate buffer (pH = 7.0). (b) CD spectral changes of T₂₂·A₂₂ upon addition of 0, 5, 10, 30, and 50 equiv Hg²⁺ ions.

Single-stranded poly(dT) was well reported to form a stable hairpin conformation in the presence of Hg^{2+.19,37,38} Even, a folded G-quadruplex structure formed by binding with a hemin protein was disentangled by the formation of T-T mismatched base pairs upon addition of Hg^{2+.39} A DNA probe containing several thymine bases that was hybridized with 10 base pairs to a complementary strand was also dehybridized upon treatment with Hg²⁺ to form a hairpin structure.⁴⁰ In that case, some thymine bases of the probe which are supposed to induce the formation of the hairpin structure through the Hg²⁺ coordination were left without base-pairing with the complementary strand. These thymine bases left without base-pairing could activate the dehybridization of the probe upon treatment with Hg²⁺. Based on the observed decrease in emission upon the addition of Hg^{2+} to the fully hybridized T22. A22, the possibility of dehybridization of the relatively long T22'A22 was examined using circular dichroism (CD). A T₂₂·A₂₂ solution upon treatment with 50 equiv Hg²⁺ afforded a positive ellipticity in the CD spectrum at 290 nm which presents a striking contrast to the 260 and 280 nm band obtained with T_{22} · A_{22} (Figure 6(a)). The positive band at 290 nm was also observed in the mixture of A₂₂ and the hairpin form prepared with T₂₂ and

Figure 7. (a) Circular dichroism spectra collected with 1.0 μ M T₂₂·A₂₂ treated with 15 equiv Hg²⁺ (gray line) and the mixture of 0.5 μ M T₂₂·A₂₂ + 0.5 μ M A₂₂ + the hairpin structure prepared with 0.5 μ M T₂₂ and 15 equiv Hg²⁺ (black) in 10 mM phosphate buffer (pH = 7.0). (b) Circular dichroism spectra collected with 1.0 μ M G₂₂·C₂₂ (gray line) and 1.0 μ M G₂₂·C₂₂ treated with 25 equiv Hg²⁺ (black) in 10 mM phosphate buffer (pH = 7.0).

50 equiv Hg^{2+} , indicating that T_{22} ·A₂₂ was in fact dehybridized upon addition of Hg²⁺. When T₂₂·A₂₂ was titrated with 10, 20, 30, and 50 equiv Hg^{2+} , the positive band of T_{22} · A_{22} at 260 nm was gradually shifted to that at 290 nm (Figure 6(b)). This progressive shift demonstrates that a certain amount of T_{22} exists in the hairpin form due to Hg^{2+} treatment and the rest remains still in the double stranded form. For example, when a sample was treated with 10 equiv Hg^{2+} , about 30% of the T_{22} ·A₂₂ was dehybridized to produce the hairpin form, resulting in the corresponding emission intensity shown in Figure 5. In addition, the CD spectrum of 1.0 μ M T₂₂·A₂₂ upon treatment with 15 equiv Hg²⁺ was very similar to that of the mixture of 0.5 μ M T₂₂·A₂₂ and the hairpin form prepared with 0.5 μ M T₂₂ and 15 equiv Hg²⁺ (Figure 7(a)). Furthermore, when G_{22} · C_{22} was treated with 25 equiv Hg²⁺, no significant change in the CD spectrum was observed (Figure 7(b)). Taken together, these data are most consistent with the dehybridization of T₂₂·A₂₂ into the hairpin confirmation upon Hg²⁺ treatment.

The selectivity of T_{22} : A_{22} for 50 equiv Hg²⁺ was evaluated by observing the response of the assay to other relevant metal ions, such as K⁺, Ag⁺, Ca²⁺, Mg²⁺, Zn²⁺, Mn²⁺, Co²⁺,

Figure 8. (a) Selectivity of the Hg²⁺-ion sensor. The concentration of Hg²⁺ was 1.0 μ M and the concentration of all other metal ions was 0.1 mM. (b) Relative increase in fluorescence intensity [$(I_o-I)/I_o$] of 10 mM phosphate solutions containing 0.10 μ M T₂₂·A₂₂ and 4.0 μ M **1** upon the addition of 1.0 μ M Hg²⁺ or the other metal ions (0.1 mM). I_o and I describe the emission intensities of **1** in the absence and presence of metal ions, respectively.

Cr²⁺, Cu²⁺, Ni²⁺, Cd²⁺, and Fe³⁺ at a concentration of 0.1 mM (Figure 8). Only Hg²⁺ displayed a marked emission change relative to the control ions and the selectivity was determined to be at least 110000-fold higher for Hg²⁺ ions over any other metal ions. In addition, when Hg²⁺ (5.0 μ M) and another metal ions (Mⁿ⁺, 200 μ M) were treated together to the T₂₂·A₂₂ solution, the emission response of the Hg²⁺-Mⁿ⁺ pair was similar to with Hg²⁺ alone, demonstrating excellent selectivity over other metal ions as well.

Oligonucleotides containing a single-mismatched base pair in the middle of T_{22} were then examined to determine if differences in emission intensity were related to the conformational change upon treatment with Hg²⁺ (Figure 9).

Figure 9. Scheme of dehybridization of matched and mismatched dsDNA upon treatment with Hg^{2+} and formation of hairpin structures.

Figure 10. (a) Emission spectra of **1** with 0.10 μ M T₂₂·A₂₂, T₂₁G·A₂₂, T₂₁G·A₂₂, and T₂₁A·A₂₂ in 10 mM phosphate buffer. (b) Emission spectra of T₂₂·A₂₂, T₁₀G·A₁₁, T₁₀C·A₁₁, and T₁₀A·A₁₁ upon treatment with 4.0 μ M Hg²⁺ ions.

Double-stranded DNA containing a single-base mismatched base in poly(dT), such as $T_{21}G \cdot A_{22}$, $T_{21}C \cdot A_{22}$, and $T_{21}A \cdot A_{22}$, were tested. T₂₂·A₂₂ displayed the highest intensity relative to the mismatched (Figure 10(a)). The formation rates of the hairpin structures were expected to induce differences in the emission intensity since the dehybridization rates with the matched dsDNA could be slower than those with the mismatched dsDNA upon treatment with Hg²⁺. Indeed, T₂₂·A₂₂ displayed difference in intensity relative to those of the mismatched. $T_{21}G \cdot A_{22}$ and $T_{21}C \cdot A_{22}$ also showed different time traces relative to $T_{21}A \cdot A_{22}$ (Figure 10(b)), indicating that the dehybridization extent of $T_{21}G{\cdot}A_{22}$ and T₂₁C·A₂₂ was relatively low. The order in the emission intensity was $T_{11} \cdot A_{22} > T_{21}G \cdot A_{22} = T_{21}C \cdot A_{22} > T_{21}A \cdot A_{22}$ demonstrating that this method was quite sensitive to distinguish the matched and mismatched dsDNA.

Conclusions

We rationally developed a label-free emission method to detect Hg^{2+} using double-stranded DNA of a poly(dT) sequence which can be intercalated by the light-switch Ru complex as an extrinsic emission reagent in aqueous media. The structural switching of dsDNA upon Hg^{2+} binding provided the opportunity to tune the dynamic range of Hg^{2+} . A detection limit as low as 0.2 nM for Hg^{2+} was obtained using this label-free emission method, which also displayed an excellent selectivity toward Hg^{2+} over several other mono, di, and trivalent metal ions. The emission measurements upon treatment with Hg^{2+} allowed to distinguish the matched from the mismatched dsDNA. This simple system of highly sensitive and selective sensing could apply for real-time mercuric ion detection in environmental samples and in other applications.

Experimental Section

Materials and Instrumentation. All chemicals obtained from Aldrich Chemical Co. were of the best available purity and used without further purification unless otherwise indicated. The ultrapure water produced by a Millipore Elix A3-MilliQ system (MilliQ, Germany) was used to prepare the aqueous solutions. Δ -Ru(phen)₂(dppz)Cl₂ (1) was prepared as described elsewhere.41 All oligonucleotides were purchased from JenoTec Inc. (Deajeon, Korea) and were purified by HPLC using a Thermo hypersyl gold column $(0.46 \times 25 \text{ cm})$. Oligonucleotide concentrations were determined spectrophotometrically by monitoring the absorbance at 260 nm on a Hewlett-Packard 8452A diode-array spectrometer. Once single-stranded DNA concentrations were known, equal molar amounts of complementary DNA were mixed, and the solution annealed at 90 °C for 5 min and then allowed to slowly cool to room temperature to prepare double-stranded DNA.

Emission spectra were collected using a Perkin-Elmer LS 55 luminescence spectrophotometer. Optical rotations were determined at ambient temperature using a JASCO J-810 polarimeter.

Detection of Mercuric Ions. The solution of dsDNA $(0.10 \ \mu\text{M}, \text{T}_{22} \cdot \text{A}_{22})$ was treated with a predetermined amount of Hg(ClO₄)₂ dissolved in an aqueous solution containing 10 mM phosphate buffer (pH = 7.0) for 5 min at room temperature. Then, the solution was mixed with 1 for 1 min before measurement at room temperature. 1 and dsDNA were suspended in the same buffer so that the composition of the buffer did not change in the final solution. Experiments with the other metal ions were carried out under the same conditions. The data points were obtained from the average of three independent measurements.

Emission Measurement with dsDNA. In a typical experiment, a sample containing mercuric ions (1.0 or 5.0 μ M) dissolved in a buffered aqueous solution containing 10 mM phosphate buffer (pH = 7.0) was mixed with 0.10 μ M matched or mismatched dsDNA at room temperature. Then, **1** (4.0 μ M) was treated and the emission spectra were taken after 1 min at a certain time interval.

Acknowledgments. This work is supported by the National Research Foundation of Korea Grant funded by the Korean Government (2010-0001485, 2009-0087304, and SRC Program: 2011-0001335), and BK21 (to B. N. O., W. Q., J.A.K., H. K. K., M.S.C., and K.Y.K.).

References

- 1. Baughman, T. A. Environ. Health Perspect 2006, 114, 147.
- Virtanen, J. K.; Rissanen, T. H.; Voutilainen, S.; Tuomainen, T.-P. J. Nutr. Biochem. 2007, 18, 75.
- Vupputuri, S.; Longnecker, M. P.; Daniels, J. L.; Guo, X.; Sandler, D. P. *Environ. Res.* 2005, 97, 195.
- Tchounwou, P. B.; Ayensu, W. K.; Ninashvili, N.; Sutton, D. Environ. Toxicol. 2003, 18, 149.
- 5. Onyido, I.; Norris, A. R.; Buncel, E. Chem. Rev. 2004, 104, 5911.
- Morel, F. M. M.; Kraepiel, A. M. L.; Amyot, M. Annu. Rev. Ecol. Syst. 1998, 29, 543.
- Halbach, S.; Kremers, L.; Willruth, H.; Mehl, A.; Elzl, G.; Wack, F. X.; Hickel, R.; Greim, H. *Hum. Exp. Toxicol.* **1997**, *16*, 667.
- Yoon, S.; Albers, A. E.; Wong, A. P.; Chang, C. J. J. Am. Chem. Soc. 2005, 127, 16030.
- Harris, H. H.; Pickering, I. J.; George, G. N. Science 2003, 301, 1203.
- Brummer, O.; La Clair, J. J.; Janda, K. D. *Bioorg. Med. Chem.* 2001, 9, 1067.
- 11. Boening, D. W. Chemosphere 2000, 40, 1335.
- Descalzo, A. B.; Martinez-Manez, R.; Radeglia, R.; Rurack, K.; Soto, J. J. Am. Chem. Soc. 2003, 125, 3418.
- Harano, K.; Hiraoka, S.; Shionoya, M. J. Am. Chem. Soc. 2007, 129, 5300.
- 14. Liu, B.; Tian, H. Chem. Commun. 2005, 3156.
- Ros-Lis, J. V.; Marcos, M. D.; Martinez-Manez, R.; Rurack, K.; Soto, J. Angew. Chem. Int. Ed. 2005, 44, 4405.
- Prodi, L.; Bargossi, C.; Montalti, M.; Zaccheroni, N.; Su, N.; Bradshaw, J. S.; Izatt, R. M.; Savage, P. B. *J. Am. Chem. Soc.* 2000, *122*, 6769.
- 17. Nolan, E. M.; Lippard, S. J. J. Am. Chem. Soc. 2003, 125, 3418.
- 18. Liu, J.; Lu, Y. Angew. Chem. Int. Ed. 2007, 46, 7587.
- 19. Ono, A.; Togashi, H. Angew. Chem. Int. Ed. 2004, 43, 4300.
- 20. Chiang, C.-K.; Huang, C.-C.; Liu, C.-W.; Chang, H.-T. Anal.

Chem. 2008, 80, 3716.

- 21. Chen, P.; He, C. J. Am. Chem. Soc. 2004, 126, 728.
- 22. Fan, L.-J.; Zhang, Y.; Jones, W. E. *Macromolecules* 2005, *38*, 2844.
- 23. Li, T.; Wang, E.; Dong, S. Chem. Commun. 2009, 580.
- 24. Li, T.; Wang, E.; Dong, S. Chem. Commun. 2008, 3654.
- Li, D.; Wieckowska, A.; Willner, I. Angew. Chem. Int. Ed. 2008, 47, 3927.
- Liu, X.; Tang, Y.; Wang, L.; Zhang, J.; Song, S.; Fan, C.; Wang, S. Adv. Mater. 2007, 19, 1471.
- 27. Kim, I. B.; Bunz, U. H. F. J. Am. Chem. Soc. 2006, 126, 728.
- 28. Xue, X.; Wang, F.; Liu, X. J. Am. Chem. Soc. 2008, 130, 3244.
- Lee, J.-S.; Han, M. S.; Mirkin, C. A. Angew. Chem. Int. Ed. 2007, 46, 4093.
- Kong, R.-M.; Zhang, X.-B.; Zhang, L.-L.; Jin, X. Y.; Huan, S.-Y.; Shen, G.-L.; Yu, R.-Q. *Chem. Commun.* 2009, 5633.
- 31. Genereux, J. C.; Barton, J. K. Chem. Rev. 2010, 110, 1642.
- 32. Lincoln, P.; Norden, B. Chem. Commun. 1996, 2145.
- 33. Tuite, E.; Lincoln, P.; Norden, B. J. Am. Chem. Soc. 1997, 119, 239.
- Choi, M. S.; Yoon, M.; Baeg, J.-O.; Kim, J. Chem. Commun. 2009, 7419.
- Friedman, A. E.; Chambron, J.-C.; Sauvage, J.-P.; Turro, N. J.; Barton, J. K. J. Am. Chem. Soc. 1990, 112, 4960.
- Murphy, C. J.; Arkin, M. R.; Ghatlia, N. D.; Bossmann, S. H.; Turro, N. J.; Barton, J. K. *Science* **1993**, *262*, 1025.
- Ono, A.; Cao, S.; Togashi, H.; Tashiro, M.; Fujimoto, T.; Machinami, T.; Oda, S.; Miyake, Y.; Okamoto, A.; Tanaka, Y. *Chem. Commun.* 2008, 4825.
- Tanaka, Y.; Oda, S.; Yamaguchi, H.; Kondo, Y.; Kojima, C.; Ono, A. J. Am. Chem. Soc. 2007, 129, 244.
- 39. Li, T.; Li, B.; Wang, E.; Dong, S. Chem. Commun. 2009, 3551.
- 40. Wang, Z.; Lee, J. H.; Lu, Y. Chem. Commun. 2008, 6005.
- 41. Hiort, C.; Lincoln, P.; Norden, B. J. Am. Chem. Soc. 1993, 115, 3448.