DOI QR코드

DOI QR Code

Synthesis and Reactivity of Dinuclear Ni(II) Azido Complexes Containing Bithienylene or Terthienylene Bridging Ligands

  • Kim, Yong-Joo (Department of Chemistry, Kangnung-Wonju National University) ;
  • Lee, Hyuck-Hee (Department of Chemistry, Kangnung-Wonju National University) ;
  • Zheng, Zhen Nu (Department of Chemistry, Sungkyunkwan University, Natural Science Campus) ;
  • Lee, Soon-W. (Department of Chemistry, Sungkyunkwan University, Natural Science Campus)
  • Received : 2011.07.06
  • Accepted : 2011.07.13
  • Published : 2011.09.20

Abstract

Dinuclear Ni(II)-thiophene halides, which contain linear bridging thienylenes, trans,trans-[$(PR_3)_2$(X)Ni-Y-Ni(X)$(PR_3)_2$] {X = Cl, Br; $H_2Y$ = 5,5'-dichloro-2,2'-bithiophene ($H_2bth$); $H_2tth$ = 5,5"-dichloro-2,2':5',2''-terthiophene ($H_2tth$)} were prepared by the oxidative addition of dihalobithiophene ($H_2bth$) or dihaloterthiophene ($H_2tth$) to [$Ni(COD)_2$] in the presence of tertiary phosphines. Subsequent reactions of $NaN_3$ with the dinuclear Ni(II)-thiophene chlorides gave the corresponding Ni(II)-azido complexes, trans,trans-[$(PR_3)_2(N_3)$Ni-Y-Ni$(N_3)(PR_3)_2$], whose reactivity toward trimethylsilyl pseudohalides such as trimethylsilyl isothiocyanates and cyanides was investigated. In addition, the reaction of trans-[$BrNi(PEt_3)_2-C_4H_2S-C_4H_2S$-CHO], a thienyl Ni(II) complex containing a terminal aldehyde group, with phosphonium ylide was examined.

Keywords

References

  1. Fichou, D. J. Mat. Chem. 2000, 3, 571.
  2. Oligothiophenes; Bauerle, P. In Electronic Materials: The Oligomer Approach; Mullen, K., Wegner, G., Eds.; Wiley-VCH: Weinheim, 1998; pp 105-197.
  3. Roncali, J. Chem. Rev. 1992, 92, 711. https://doi.org/10.1021/cr00012a009
  4. Tour, J. M. Acc. Chem. Res. 2000, 33, 791. https://doi.org/10.1021/ar0000612
  5. Jones, R. A.; Civcir, P. U. Tetrahedron 1997, 53, 11529. https://doi.org/10.1016/S0040-4020(97)00745-X
  6. Zotti, G.; Schiavon, G.; Berlin, A.; Pagni, G. Chem. Mater. 1993, 5, 430. https://doi.org/10.1021/cm00028a006
  7. Patrick, B. O.; Clot, O.; Wolf, M. O.; Patrick, B. O. J. Am. Chem. Soc. 2000, 122, 10456. https://doi.org/10.1021/ja002258v
  8. Clot, O.; Wolf, M. O.; Patrick, B. O. J. Am. Chem. Soc. 2001, 123, 9963. https://doi.org/10.1021/ja016465m
  9. Clot, O.; Wolf, M. O.; Yap, G. P. A.; Patrick, B. O. J. Chem. Soc., Dalton Trans. 2000, 2729.
  10. Stott, T. L.; Wolf, M. O.; Lam, A. Dalton Trans. 2005, 652.
  11. Myrex, R. D.; Gray, G. M.; VanEngen Spivey, A. G.; Lawson, C. M. Organometallics 2006, 25, 5045. https://doi.org/10.1021/om060224b
  12. Weinberger, D. A.; Higgins, T. B.; Mirkin, C.; Liable-Sands, A. L. M.; Rheingold, A. L. Angew. Chem. Int. Ed. 1999, 38, 2565. https://doi.org/10.1002/(SICI)1521-3773(19990903)38:17<2565::AID-ANIE2565>3.0.CO;2-U
  13. Kim, D. H.; Kang, B. S.; Lim, S. M.; Bark, K.-M.; Kim, B.-G.; Shiro, M.; Shin, Y.-B.; Shin, S. C. Dalton Trans. 1998, 1893.
  14. Xie, Y.; Wu, B.-M.; Xue, F.; Ng, S.-C.; Mak, T. C. W.; Andy Hor, T. S. Organometallics 1998, 17, 3988. https://doi.org/10.1021/om9800142
  15. Teo, T.; Andy Hor, T. S. Inorg. Chem. 2003, 42, 7290. https://doi.org/10.1021/ic034690u
  16. Kotani, S.; Shiina, K.; Sonogashira, K. J. Organomet. Chem. 1992, 429, 403. https://doi.org/10.1016/0022-328X(92)83188-N
  17. Onitsuka, K.; Murakami, K.; Matsukawa, K.; Sonogashira, K.; Adachi, T.; Yoshida, T. J. Organomet. Chem. 1995, 490, 117. https://doi.org/10.1016/0022-328X(94)05193-F
  18. Elgazwy, A.-SSH. Appl. Organomet. Chem. 2007, 21, 1041. https://doi.org/10.1002/aoc.1329
  19. Kim, Y.-J.; Lee, S.-C.; Cho, M.-H.; Lee, S. W. J. Organomet. Chem. 1999, 588, 268. https://doi.org/10.1016/S0022-328X(99)00391-5
  20. Chang, X.; Kim, M.-Y.; Kim, Y.-J.; Huh, H.-S.; Lee, S. W. Dalton Trans. 2007, 792.
  21. Miyakoshi, R.; Yokoyama, A.; Yokozawa, T. J. Am. Chem. Soc. 2005, 127, 17542. https://doi.org/10.1021/ja0556880
  22. Tkachov, R.; Senkovskyy, V.; Komber, H.; Sommer, J.-U.; Kiriy, A. J. Am. Chem. Soc. 2010, 132, 7803. https://doi.org/10.1021/ja102210r
  23. Yamamoto, T.; Morita, A.; Miyazaki, Y.; Maruyama, T.; Wakayama, H.; Zhou, Z.-H.; Nakamura, Y.; Kanbara, T.; Sasaki, S.; Kubota, K. Macromolecules 1992, 25, 1214. https://doi.org/10.1021/ma00030a003
  24. Zotti, G.; Schiavon, G.; Berlin, A.; Pagani, G. Chem. Mater. 1993, 5, 430. https://doi.org/10.1021/cm00028a006
  25. Uhlenbroek, J. H.; Bijloo, J. D. Rec. Trav. Chem. 1960, 79, 1181.
  26. Mubarak, M. S. J. Electrochem. Soc. 2002, 149, E222. https://doi.org/10.1149/1.1477208
  27. Kim, Y.-J; Han, J.-T.; Kang, S.; Han, W.-S.; Lee, S. W. Dalton Trans. 2003, 3357.
  28. Kargol, J. A.; Crecely, R. W.; Burmeister, J. L. Inorg. Chem. 1979, 18, 2532. https://doi.org/10.1021/ic50199a040
  29. Kim, Y.-J.; Lee, S.-H.; Lee, S.-H.; Jeon, S. I.; Lim, M. S.; Lee, S. W. Inorg. Chim. Acta 2005, 358, 650. https://doi.org/10.1016/j.ica.2004.09.056
  30. Jensen, K. A.; Nielsen, P. H.; Pedersen, C. T. Acta Chem. Scand. 1963, 17, 1115. https://doi.org/10.3891/acta.chem.scand.17-1115
  31. Sheldrick, G. M. SADABS, Program for Absorption Correction, University of Gottingen, 1996.
  32. Bruker, SHELXTL, Structure Determination Software Programs, Bruker, Analytical X-ray Instruments Inc., Madison, Wisconsin, USA, 1997.