DOI QR코드

DOI QR Code

Structural, Magnetic, and Electronic Properties of Fe: A Screened Hybrid Functional Study

  • Received : 2011.07.20
  • Accepted : 2011.09.08
  • Published : 2011.09.30

Abstract

We performed total energy and electronic structure calculations for the basic ground state properties of Fe using the conventional generalized gradient approximation (GGA) and screened hybrid functionals as the form of the exchange-correlation functional. To that end, we calculated structural (equilibrium lattice constants, bulk moduli, and cohesive energies) and electronic (magnetic moments and densities of states) properties. Both functional calculations gave the correct ground state, the ferromagnetic bcc phase, in which the structural parameters agreed well with experimental results. However, the description of the cohesive energies and magnetic moments at the ground state exhibited different behavior from each other: the unusually small cohesive energy and large magnetic moment were observed in the screened hybrid functional calculations compared to the GGA calculations. The reason for the difference was examined by analyzing the calculated electronic structures.

Keywords

References

  1. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). https://doi.org/10.1103/PhysRev.136.B864
  2. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133
  3. J. P. Perdew and K. Schmidt, in Density Functional Theory and its Application to Materials, edited by V. Van Doren, C. Van Alsenoy, and P. Geerlings, AIP, Melville, New York (2001).
  4. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992). https://doi.org/10.1103/PhysRevB.46.6671
  5. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  6. J.-H. Cho and M. Scheffler, Phys. Rev. B 53, 10685 (1996). https://doi.org/10.1103/PhysRevB.53.10685
  7. B. D. Yu and M. Scheffler, Phys. Rev. Lett. 77, 1095 (1996). https://doi.org/10.1103/PhysRevLett.77.1095
  8. B. D. Yu and M. Scheffler, Phys. Rev. B 55, 13916 (1997). https://doi.org/10.1103/PhysRevB.55.13916
  9. B. D. Yu and M. Scheffler, Phys. Rev. B 56, R15569 (1997). https://doi.org/10.1103/PhysRevB.56.R15569
  10. T. C. Leung, C. T. Chan, and B. N. Harmon, Phys. Rev. B 44, 2923 (1991). https://doi.org/10.1103/PhysRevB.44.2923
  11. M. Kodera, T. Shishidou, and T. Oguchi, J. Phys. Soc. Jpn. 79, 074713 (2010). https://doi.org/10.1143/JPSJ.79.074713
  12. D. Lee and S. Hong, J. Magnetics 12, 68 (2007). https://doi.org/10.4283/JMAG.2007.12.2.068
  13. W. S. Yun, G.-B. Cha, and S. C. Hong, J. Magnetics 13, 144 (2008). https://doi.org/10.4283/JMAG.2008.13.4.144
  14. S.-W. Seo, Y. Y. Song, G. Rahman, I. G. Kim, M. Weinert, and A. J. Freeman, J. Magnetics 14, 137 (2009). https://doi.org/10.4283/JMAG.2009.14.4.137
  15. F. Fuchs, J. Furthmüller, F. Bechstedt, M. Shishkin, and G. Kresse, Phys. Rev. B 76, 115109 (2007). https://doi.org/10.1103/PhysRevB.76.115109
  16. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006). https://doi.org/10.1063/1.2204597
  17. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003). https://doi.org/10.1063/1.1564060
  18. C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999). https://doi.org/10.1063/1.478522
  19. H.-J. Freund, Angew. Chem. 109, 444 (1997). https://doi.org/10.1002/ange.19971090504
  20. C. Stampfl, M. V. Ganduglia-Pirovano, K. Reuter, and M. Scheffler, Surf. Sci. 500, 368 (2002). https://doi.org/10.1016/S0039-6028(01)01551-5
  21. J. Park, I. Park, and B. D. Yu, J. Korean Phys. Soc. 54, 109 (2009). https://doi.org/10.3938/jkps.54.109
  22. J. Park and B. D. Yu, J. Phys. Soc. Jpn. 79, 074718 (2010). https://doi.org/10.1143/JPSJ.79.074718
  23. Y.-R. Jang, J. Park, and B. D. Yu, J. Phys. Soc. Jpn. 79, 124703 (2010). https://doi.org/10.1143/JPSJ.79.124703
  24. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nature Mater. 3, 868 (2004). https://doi.org/10.1038/nmat1257
  25. J. Park and B. D. Yu, Phys. Rev. B 83, 144431 (2011). https://doi.org/10.1103/PhysRevB.83.144431
  26. J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, and J. G. Angyan, J. Chem. Phys. 124, 154709 (2006). https://doi.org/10.1063/1.2187006
  27. G. Kresse and J. Hafner, Phys. Rev. B 47, R558 (1993). https://doi.org/10.1103/PhysRevB.47.558
  28. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
  29. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
  30. F. Birch, Phys. Rev. 71, 809 (1947). https://doi.org/10.1103/PhysRev.71.809
  31. D. J. Singh, W. E. Pickett, and H. Krakauer, Phys. Rev. B 43, 11628 (1991). https://doi.org/10.1103/PhysRevB.43.11628
  32. H. L. Zhang, S. Lu, M. P. J. Punkkinen, Q.-M. Hu, B. Johansson, and L. Vitos, Phys. Rev. B 82, 132409 (2010). https://doi.org/10.1103/PhysRevB.82.132409
  33. J. P. Perdew, Phys. Rev. B 33, 8822 (1986). https://doi.org/10.1103/PhysRevB.33.8822
  34. J. P. Perdew, Electronic Structure of Solids '91, edited by P. Ziesche and H. Eschrig, Akademie-Verlag, Berlin (1991).
  35. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992). https://doi.org/10.1103/PhysRevB.46.6671
  36. American Institute of Physics Handbook, edited by D. E. Gray, 3re ed., McGraw-Hill, New York (1972).
  37. C. Kittel, Introduction to Solid State Physics, 8th ed., Wiley, New York (2004).
  38. G. Y. Guo, Phys. Rev. B 55, 11619 (1997). https://doi.org/10.1103/PhysRevB.55.11619

Cited by

  1. Electronic structures and spin magnetic properties of CoFe: Lattice strain effects vol.60, pp.3, 2012, https://doi.org/10.3938/jkps.60.445
  2. Hybrid Functional Study of the Structural and Electronic Properties of Co and Ni vol.81, pp.11, 2012, https://doi.org/10.1143/JPSJ.81.114715