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Abstract
Privacy preserving microdata publication has received wide attention. In this paper, we investigate the randomization approach and

focus on attribute disclosure under linking attacks. We give efficient solutions to determine optimal distortion parameters, such that we

can maximize utility preservation while still satisfying privacy requirements. We compare our randomization approach with l-diversity

and anatomy in terms of utility preservation (under the same privacy requirements) from three aspects (reconstructed distributions,

accuracy of answering queries, and preservation of correlations). Our empirical results show that randomization incurs significantly

smaller utility loss. 
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I. INTRODUCTION

Privacy preserving microdata publication has received wide

attention [1-5]. Each record corresponding to one individual has

a number of attributes, which can be divided into the following

three categories: 1) identity attributes (e.g., Name and SSN)

whose values can uniquely identify an individual; 2) quasi-

identifier (QI) attributes (e.g., demographic attributes such as

ZIP code, age, and gender) whose values when taken together

can potentially identify an individual; 3) sensitive attributes

(e.g., disease and income) that indicate confidential information

of individuals.

Before microdata are released, identity attributes are often

directly removed to preserve privacy of individuals whose data

are in the released table. However, the QI information may be

used by attackers to link to other public data sets to get the pri-

vate information of individuals. This is recognized as linking

attacks in microdata publishing. Two types of information dis-

closures have been identified under linking attacks: identity dis-

closure and attribute disclosure [6]. Identity disclosure occurs if

attackers can identify an individual from the released data.

Attribute disclosure occurs when confidential information about

an individual is revealed and can be attributed to the individual.

Samarati and Sweeney [1] proposed the k-anonymity model and

presented a generalization approach that divides tuples into QI-

group by transforming their QI-values into less specific forms,

such that tuples in the same QI-group cannot be uniquely identi-

fied by attackers to counter linking attacks based on quasi-iden-

tifiers. It was identified that k-anonymity is vulnerable to

homogeneity and background knowledge attacks when data in

the QI-group lacks diversity in the sensitive attributes [2]. l-

diversity [2], as well as following models (e.g., t-closeness [7]),

were proposed to protect attribute disclosure. l-diversity

requires that the sensitive attribute has at least one well-repre-

sented values for each QI-group in the generalized dataset. 

The randomization approach has also been adopted to pub-

lish microdata [8-12]. Instead of generalizing QI attribute val-

ues, randomization approach distorts the original value to

another domain value according to some distortion probabili-

ties. The application of the randomization technique was stud-
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ied to prevent identity disclosure under linking attacks in data

publishing [12]. They focused on evaluating the risk of success-

fully linking a target individual to the index of his record given

values of QI attributes. Our research moves one step further to

investigate attribute disclosure under linking attacks. We focus

on evaluating the risk of successfully predicting the sensitive

attribute value of a target individual given his QI attribute val-

ues. We present a general randomization framework and give

efficient solutions to determine optimal randomization parame-

ters for both QI and sensitive attributes. Thus, we can maximize

data utility, while satisfying privacy preservation requirements

for sensitive attributes. We compare our randomization approach

with other anonymization approaches within the framework

(e.g., two representative approaches l-diversity [2] and anatomy

[5] are used in this paper). Our result shows the randomization

approach can better recover the distribution of the original data

set from the disguised one. Thus, intuitively, it might yield a

disguised database with higher data utility than l-diversity gen-

eralization and anatomy.

Our contributions are summarized as follows. We present a

systematic study of the randomization method in preventing

attribute disclosure under linking attacks. We propose the use of

a specific randomization model and present an efficient solution

to derive distortion parameters to satisfy requirements for pri-

vacy preservation, while maximizing data utilities. We propose

a general framework and present a uniform definition for

attribute disclosure which is compatible for both randomization

and generalization models. We compare our randomization

approach with l-diversity and anatomy in terms of utility preser-

vation (under the same privacy requirements) from three aspects

(reconstructed distributions, accuracy of answering queries, and

preservation of correlations). Our empirical results show that

randomization incurs significantly smaller utility loss. 

The remainder of this paper is organized as follows. In Sec-

tion II, we discuss closely related work on group based anony-

mization approaches and randomization approaches in privacy

preservation data publishing. In Section III, we present back-

ground on randomization based distortions, including analysis

and attacks on the randomized data. In Section IV, we first

quantify attribute disclosure under linking attacks and then

show our theoretical results on maximizing utility with privacy

constraints. In Section V, we conduct empirical evaluations and

compare the randomization based distortion with two represen-

tative group based anonymization approaches (l-diversity [2]

and anatomy [5]). We conclude our work in Section VI.

II. RELATED WORK

A. Group Based Anonymization 

k-anonymity was proposed [1] to counter linking attacks for

data publishing. The method generalizes the values of quasii-

dentifier attributes to less-specific ones, so that each individual

cannot be distinguished from at least k − 1 other individuals

based on quasi-identifier information. There has been much

study in designing efficient algorithms for k-anonymity using

generalization and suppression techniques [2, 3, 5, 13, 14]. 

k-anonymity provides protection against identity disclosure,

while it contributes little to attribute disclosure. l-diversity [2] is

proposed to counter attribute disclosure. A table is l-diverse if,

in each QI-group, at most 1/l of the tuples possesses the most

frequent sensitive value. Thus, an individual can be linked to his

sensitive value correctly with probability at most 1/l. Similarly,

the notation of t-closeness [7] requires that the distribution of a

sensitive attribute in any equivalence class is close to the distri-

bution of the attribute in the overall table (i.e., the distance

between the two distributions should be no more than a thresh-

old t). The anatomy method was proposed to protect attribute

disclosure by breaking the link between quasi-identifiers and

sensitive attributes [5]. Anatomy releases all the quasi-identifier

and sensitive values directly in two separate tables: a quasi-

identifier table (QIT) and a sensitive table (ST). They presented

an algorithm to compute anatomized tables that satisfy the l-

diversity requirement, while minimizing the error of recon-

structing the data. 

Kifer and Gehrke [15] investigated the problem of injecting

additional information into k-anonymous and l-diverse tables to

improve the utility of published data. Koudas et al. [16] studied

the problem of preserving privacy through sensitive attribute

permutation and generalization with the addition of fake sensi-

tive attribute values. Narayanan and Shmatikov [17] presented a

de-anonymization methodology for sparse multi-dimensional

microdata, such as individual transactions, preferences, and so

on. The de-anonymization algorithm could be used by attackers

against data sets containing anonymous high-dimensional data.

Brickell and Shmatikov [18] compared the privacy loss (defined

by certain kinds of information learned by attackers) with the

utility gain (defined as the same kinds of information learned by

analysts) caused by data anonymization and concluded that

“even modest privacy gains require almost complete destruction

of the data mining utility” in generalization methods. Li and Li

[19] proposed the use of the worst-case privacy loss rather than

the average privacy loss among all individuals adopted in [18]

to measure privacy loss. They further presented a methodology

to evaluate the privacy-utility tradeoff, where privacy loss is

quantified by the adversary’s knowledge gain about the sensi-

tive values of specific individuals with the trivially-anonymized

data as the baseline and utility loss is measured by the informa-

tion loss about the sensitive values of large populations with the

original data as the baseline. In our paper, we use 1/l to bound

the attribute disclosure for all records and use the difference of

distributions between the original data and the reconstructed

data to quantify utility loss. We also examine the utility loss

from the perspective of answering aggregate queries and pre-

serving correlations between the sensitive attribute and QI

attributes. 

In this paper, we focus on the randomization model in resist-

ing attribute disclosure of data publishing. The proposed ran-

domization model is compared to traditional l-diversity [2] and

anatomy [5] models. Recently, Ghinita et al. [14] proposed a

framework to solve the privacy-constrained and accuracy con-

strained data anonymization problems under the k-anonymity

and l-diversity models. They developed efficient heuristics to

solve the one-dimensional problems in linear time and general-

ized solutions to multi-dimensional attributes using space-map-

ping techniques. Their empirical evaluation results showed that

privacy/accuracy-constrained methods outperform existing gen-
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eralization approaches in terms of the execution time and infor-

mation loss. We would also point out that researchers have

developed various anonymity models, including p-sensitive k-

anonymity [20], (α, k)-anonymity [21], (k, e)-anonymity [4], (c,

k)-safety [22], m-confidentiality [23], privacy skyline [24], δ-

presence [25], ( , m)-anonymity [26], and (t, λ)-uniqueness

[27]. Detailed comparisons to these works are beyond the scope

of this paper.

B. Randomization

The first randomization model, called Randomized Response

(RR), was proposed by Warner [28] in 1965. The model deals

with one dichotomous attribute, i.e., every person in the popula-

tion belongs either to a sensitive group A, or to its complement

. The problem is to estimate πA, the unknown proportion of

population members in group A. Each respondent is provided

with a randomization device by which the respondent chooses

one of the following two questions Do you belong to A? or Do

you belong to ? with respective probabilities p and 1 − p and

then replies yes or no to the question chosen. The technique pro-

vides response confidentiality and increases respondents’ will-

ingness to answer sensitive questions, because no one but the

respondent knows to which question the answer pertains. It has

been extended to the field of privacy preserving data mining

[29]. 

Aggarwal and Yu [30] provided a survey of randomization

models for privacy preservation data mining, including various

reconstruction methods for randomization, adversarial attacks,

optimality and utility of randomization. Rizvi and Haritsa [9]

developed the MASK technique to preserve privacy for fre-

quent item set mining. Agrawal and Haritsa [31] presented a

general framework of random perturbation in privacy preserva-

tion data mining. Du and Zhan [8] studied the use of a random-

ized response technique to build decision tree classifiers. Guo et

al. [10] investigated data utility in terms of the accuracy of

reconstructed measures in privacy preservation market basket

data analysis. Aggarwal [32] proposed adding noise from a

specified distribution to produce a probabilistic model of k-ano-

nymity. Zhu and Liu [33] investigated the construction of opti-

mal randomization schemes for privacy preservation density

estimation and proposed a general framework for randomiza-

tion using mixture models. Rebollo-Monedero et al. [34]

defined the privacy measure similar to t-closeness [7] and for-

malized the privacy-utility tradeoff from the information theory

perspective. The resulting solution turns out to be the postran-

domization (PRAM) method [35] in the discrete case and a

form of random noise addition in the general case. They also

proved that the optimal perturbation is in general randomized,

rather than deterministic in the continuous case. 

Huang and Du [36] studied the search of optimal distortion

parameters to balance privacy and utility. They developed an

evolutionary multi-objective optimization method to find opti-

mal distortion matrices when applying the RR technique on a

single attribute. The complexity of the algorithm is O(((NQ +

NV)3 + n2) L) where NQ is the population size, NV is the archive

size, n is the number of columns in the RR matrix, and L is the

maximum number of iterations. However, there is no guarantee

that the derived matrices are optimal in the entire search space

and the performance tends to be sacrificed for multiple

attributes due to the intractable size of the search space. Simi-

larly, Xiao et al. [37] investigated the optimal random perturba-

tion at multiple privacy levels.

In our paper, we focus on a specific randomization model

(i.e., perturbation retains the original value of an attribute Ai

with probability pi and replaces the original value with a ran-

dom value from the domain of Ai, see Equation 1) and derive an

efficient solution to determine the optimal randomization

parameters under linking attacks. Chaytor and Wang [38] also

applied the use of this simple randomization model to random-

ize a sensitive value only within a subset of the entire domain.

The developed algorithm, called Small Domain Randomization,

can effectively derive optimal partitions, such that randomizing

the sensitive attribute values of records (with small domains) in

each partition separately can retain more data utility with the

same level of privacy than randomizing the whole data set over

the entire domain. Our work focuses on attribute disclosure

when applying full domain randomization on both QI attributes

and sensitive attribute S. The derived optimal randomization

parameter values under privacy constraints can be incorporated

in the small domain randomization.

III. PRELIMINARIES

Dataset T contains N records and m + 1 categorical attributes:

A1, A2, . . . , Am, and S. We use QI = {A1, . . . , Am} to denote the

set of quasi-identifier attributes (e.g., demographic) whose val-

ues may be known to the attacker for a given individual and use

S to denote one sensitive attribute whose value should not be

associated with an individual by attackers. Generally, T may

also contain other attributes that are neither sensitive nor quasi-

identifying. Those attributes are usually kept unchanged in the

released data. We exclude them from our setting, since they do

not incur privacy disclosure risk or utility loss. All of the dis-

cussions in this paper are also explained in the single sensitive

attribute setting and can be generalized to multiple sensitive

attributes. 

Attribute Ai has di categories denoted by 0,1,. . . , di − 1. We

use Ωi to denote the domain of Ai (S), Ωi = {0, 1, . . . , di − 1},

and ΩQI = Ω1 × · · · × Ωm is the domain of quasi-identifiers. Sim-

ilarly, attribute S has ds categories denoted by 0,1,. . . , ds − 1. We

use Ωs = {0, 1, . . . , ds − 1} to denote the domain of S. The r-th

record Rr is denoted by (A1r, A2r, . . . , Amr, Sr) or simply (QIr, Sr).

Let D = ds  di be the total number of cells in the contingency

table.

Let  denote the true proportion corresponding to

the categorical combination (A1 = i1, · · · , Am = im, S = is). Let π
be the column vector with D elements  arranged in a

fixed order. Table 1 shows one contingency table example for a

data set with one QI attribute (Gender, d1 = 2) and one sensitive

attribute S (Disease, ds = 3). Table 1a shows the original contin-

gency table where π = (π00, π01, π02, π10, π11, π12)' corresponds to

a fixed order of cell entries πij in the 2 × 3 contingency table. π10

denotes the proportion of records with Female and Cancer. The

column sum π+0 represents the proportion of records with Can-

cer across both genders. Note that contingency tables are widely

used in statistics to record and analyze the relationship between

c
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categorical attributes. Results of most data mining tasks (e.g.,

clustering, decision tree learning, and association rule mining),

as well as aggregate queries, are solely determined by the con-

tingency table. That is, analysis on contingency tables is equiva-

lent to analysis on the original categorical data. Table 1b shows

one contingency table instance derived from the data set with

100 tuples. We will use this contingency table as an example to

illustrate properties of link disclosure. 

A. Distortion Procedure 

We use the left part of Fig. 1 to illustrate the process of pri-

vacy preserving data publishing. For each record Rj, the data

owner independently randomizes attribute Ai using the distor-

tion matrix Pi. Specifically, for attribute Ai (or S) with di catego-

ries, the randomization process is to change a record belonging

to the v-th category (v = 0, . . . , di − 1) to the u-th category with

probability : Pr(  =  = v) = . Let pi = , and

we call Pi (or Ps) the distortion matrix for Ai (or S). Naturally,

the column sums of Pi are equal to 1. The original database T is

changed to , and then both the randomized data set and the

distortion matrices are published. The randomization matrices

indicate the magnitude of the randomization; this can help data

analysts estimate the original data distribution.

Let λ denote the contingency table of the randomized data

. We arrange λ into the column vector with the same order of

π. Table 1c shows one example of the randomized contingency

table. The randomized contingency table has a close relation-

ship to the original contingency table and the randomization

matrices: E(λ) = P π where P = P1 ⊗ · · · ⊗ Pm ⊗ Ps, and ⊗
stands for the Kronecker product. The Kronecker product is an

operation on two matrices, an m-by-n matrix A and a p-by-q

matrix B, resulting in the mp-by-nq block matrix. 

Distortion matrices determine the privacy and utility of the

randomized data. How to find optimal distortion parameters

with privacy or utility constraints has remained a challenging

problem [39]. In this paper, we limit the choice of randomiza-

tion parameters for each QI attribute Ai (and sensitive attribute

S) as:

Pr(  =  = v) =  = (1)

That is, for each attribute Ai, all categories have the same

probability pi to remain unchanged, and have the same probabil-

ity qi to be distorted to a different category. With this choice

limit, we can derive an efficient algorithm (with explicit for-

mula) to determine the optimal randomization parameters (as

shown in Section IV-B). 

B. Analysis on the Randomized Data 

One advantage of randomization procedure is that the pure

random process allows data analysts to estimate the original

data distribution based on the released data and the randomiza-

tion parameters. The right part of Fig. 1 shows how data ana-

lysts estimate the original data distribution. With the randomized

data  and its contingency table λ, the unbiased estimate of π is

given by  = P−1λ and the covariance matrix of the estimator is

Σ = Cov( ) = [P−1(Pπ)δ(PT)−1 − ππT] (2)

where (Pπ)δ stands for the diagonal matrix, whose diagonal val-

ues are Pπ. 

Thus, data analysts derive the estimation for the distribution

of original data (in terms of contingency table) without disclos-

ing the individual information of each record. We choose the

accuracy of reconstructed distribution as the target utility func-

tion in Section IV-B, because most data mining applications are

based on the probability distribution of the data. 

C. Attacks on Randomized Data 

Let X be an attribute or a subset of attributes in the data set T

with domain ΩX, and  is the randomized value of X in . It is

not reasonable for attackers to regard the observed value as the

true value of X, with the randomization process and parameters.

Instead, attackers can try to estimate the original value based on

the observed data and the released randomization parameters.

Let  denote the attackers’ estimation on the original value of

X. Any value in ΩX is possible due to the randomization proce-

dure. We assume that the attacker is able to calculate the poste-

rior probability of content in the data set and takes the following

probabilistic strategy: for any µ, ν ∈ ΩX, 

 = µ with prob. Pr(X = µ|  = ν), (3)

puv
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Table 1. 2 × 3 contingency tables for two variables gender (QI), disease
(sensitive)

(a) Original (b) Instance

Cancer Flu Anemia Cancer Flu Anemia

Male π00 π01 π02 π0+ M 8 16 48

Female π10 π11 π12 π1+ F 12 14 2

π+0 π+1 π+2 π++

(c) After randomization

Cancer Flu Anemia

Male λ00 λ01 λ02 λ0+

Female λ10 λ11 λ12 λ1+

λ+0 λ+1 λ+2 λ++

Fig. 1. Randomization based privacy-preserving data publishing.
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where Pr(X = µ|  = ν) denotes the attacker’s posterior belief on

the original value X = µ when he observes  = ν. With the

Bayes’ theorem, it can be calculated by:

Pr(X = µ|  = ν) = . (4)

The following lemma gives the accuracy of the attacker’s

estimation.

LEMMA 1. Suppose attackers adopt the probabilistic strategy

specified in (3) to estimate the data. The probability that attack-

ers accurately estimate the original value of X is given by:

Pr(  = X = µ) = Pr(X = µ|  = ν). (5)

PROOF. For a particular observed value  = ν  ∈ ΩX,

Pr(  = X = µ,  = ν) = Pr(  = ν |X = µ) Pr(X = µ|  = ν).

Then, with the law of total probability, we have

Pr(  = X = µ) =  

= Pr(X = µ|  = ν).

The probability of attackers’ correct estimation is also defined

as the reconstruction probability, Pr(X = µ → X = µ), in [9, 12].

It captures the round-trip of going from the original content to

the distorted one and then returning to estimate the value of the

original content. That is, it indicates how much information of

the original data is preserved after randomization. To make the

notation concise, we adopt the notation Pr(  = X = µ) to denote

the reconstruction probability to evaluate the risk of the sensi-

tive attribute disclosure.

IV. ATTRIBUTE DISCLOSURE UNDER LINKING
ATTACKS

We measure privacy in terms of the attribute disclosure risk,

whose formal definition is given, as follows: 

DEFINITION 1. The attribute disclosure risk under linking

attacks is defined to be the probability that the attacker predicts

Sr successfully given QIr of a target individual r, denoted as

Pr(Sr|QIr).

We need to quantify the background knowledge of attackers

to derive the disclosure probability Pr(Sr|QIr). We have the fol-

lowing standard assumptions for background knowledge of

attackers in this paper. We assume that the attacker has access to

the published data set  and he knows that  is a randomized

version of some base table T. The attacker knows the domain of

each attribute of T. We also assume that the attacker can obtain

the QI-values of the target individual (e.g., Alice) from some

public database or background knowledge and knows that the

target individual is definitely contained in the published data.

However, he has no knowledge of which record in the published

data belongs to the target individual. Finally, we assume that the

distortion matrices Pi are available to the attacker, because they

are necessary for data miners to conduct analysis. The algorithm

of l-diversity in [2] preserves privacy by generalizing the QI

attributes to form QI-groups. Individuals in the group are linked

to any sensitive attributes with probability at most 1/l, i.e.,

Pr(Sr|QIr) ≤ 1/l . However, the randomization based approach

achieves the privacy protection probabilistically. In the follow-

ing subsection, we show how to quantify the attribute disclosure

risk in the randomization settings.

A. Quantifying Attribute Disclosure

When there is no randomization applied, for those records

with their quasi-identifiers equal to QIr, the attacker simply

regards every record as having the same probability to represent

individual r. The risk of sensitive attribute disclosure is equal to

, because there are  records within the group of QIr,

and  of them have the sensitive value equal to Sr. This

case corresponds to the worst case of the attribute disclosure

risk. When randomization is applied, the attribute disclosure

risk will be reduced, because the randomization increases the

attacker’s uncertainty. 

1) Randomize S only (RR-S): When data owners only apply

randomization to the sensitive attribute, for each record within

the group of QIr, the attacker takes a guess on its sensitive value

using the observed sensitive value and the posterior probability

in (4). According to (5), the probability of a correct estimation

is Pr(  = Sr|QIr), then the risk of sensitive attribute disclosure is

 Pr(  = Sr|QIr).
 

2) Randomize QI only (RR-QI): Similarly as RR-S, when

data owners only apply randomization to the quasi-identifiers,

the probability of correctly reconstructing QIr is given by Pr( r

= QIr), and hence the risk of sensitive attribute disclosure is

 Pr( r = QIr).

3) Randomize QI and S (RR-Both): When data owners

apply randomization to both QI and S, the attacker first needs to

ensure the values of identifier attributes are correctly recon-

structed. The probability is given by Pr( r = QIr). Second, the

attacker needs to ensure the value of the sensitive attribute,

given the correctly reconstructed identifier attribute values are

correctly reconstructed. We summarize the risk of sensitive

attribute disclosure in RR-Both , as well as RR-S and RR-QI, in

the following result and give the general calculation of the

attribute disclosure risk in the randomization settings. 

RESULT 1. Assume an individual r has quasi-identifier QIr =

α = {i1, i2, . . . , im}, ik ∈ Ωk, and his sensitive attribute Sr = u, u

∈ Ωs. The probability of successfully predicting the sensitive

attribute value Sr of the target individual r given his quasi-iden-

tifier values QIr is:

Pr(Sr|QIr) = Pr( r = QIr) Pr(  = Sr|QIr). (6)

We give the formal expressions of the two reconstruction

probabilities needed in calculating Pr(Sr|QIr) in (6). The recon-

struction probability of the quasi-identifier is given by:

X̃

X̃

X̃
πµPr X̃ ν X µ= =( )

πωPr X̃ ν X ω= =( )
ω Ω
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∑
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∈
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Pr( r = QIr = α)

= ( r = β |QIr = α) Pr(QIr = α| r = β)

= , (7)

where Pr( r = β|QIr = α) =  is the probability that α =

{i1, i2, . . . , im} is distorted to β = {j1, j2, . . . , jm}. 

The reconstruction probability of the sensitive attribute S for

the target individual with the quasi-identifier QIr is given by:

Pr(  = Sr = u|QIr)

= (  = v|S = u, QIr) Pr(S = u|  = v, QIr)

= Pr(S = u|  = v, QIr)

= . (8)

We are interested in when the attribute disclosure reaches the

minimum. We show our results in the following property and

include our proof in the Appendix.

PROPERTY 1. Given QIr of individual r:

for RR-S, Pr(Sr|QIr) is minimized when ps = , min Pr(Sr|QIr)

= ;

for RR-QI, Pr(Sr|QIr) is minimized when pi =  (i = 1, 2, . . . ,

m), min Pr(Sr|QIr) = ; 

for RR-Both , Pr(Sr|QIr) is minimized when pi =  (i = 1, 2, . . . ,

m, and s), min Pr(Sr|QIr) = .

Example. We use the instance shown in Table 1b to illustrate

this property. For an individual r with (QIr = Female, Sr = Can-

cer), we randomize S (Disease) with ps and QI (Gender) with pG

independently. Fig. 2 shows how the attribute disclosure is var-

ied when we apply different randomization parameters. We can

see that Pr(Sr|QIr) reaches the maximum (i.e.,  = 0.43) when

no randomization is introduced. Fig. 2a shows the scenario when

we only randomize S. We can see that min Pr(Sr|QIr) =  = 0.18

when ps =  = . Fig. 2b shows the scenario when we only ran-

domize QI. We can see that min Pr(Sr|QIr) = π10 = 0.12 when pG =

 = . Fig. 2c shows the case where randomization is applied to

both QI and S. Pr(Sr|QIr) reaches the minimum only when both ps =

 and pG = , and min Pr(Sr|QIr) =  = 0.05.

Computational Cost. The main computation cost in (6)

comes from calculating Pr( r = QIr). Let PQI be the distortion

matrix on quasi-identifiers: PQI = P1 ⊗ · · · ⊗ Pm, πQI be the con-

tingency table on all quasi-identifiers arranged in a column vec-

tor, and λQI denote the expected QI contingency table of the

randomized data: λQI = PQI πQI. Then, the denominator in (7) is

exactly the cell of λQI corresponding to β. Let η denote the col-

umn vector of the reconstruction probabilities of quasi-identifi-

ers, arranged in the same order of πQI. We can further express

(7) in matrix form:

η = πQI

= πQI (9)

where  denotes the component-wise multiplication,  is the

component-wise square of Pi, and  is the component-wise

inverse of λQI. 

In (9), we need to repeatedly calculate (P1 ⊗ · · · ⊗ Pm)x,

where x denotes a column vector. Assume we use the naive

algorithm in all matrix multiplications. Calculating (P1 ⊗ · · · ⊗
Pm)x directly results in the time and storage complexity of

O(Πi ). The main storage complexity is from storing matrix

PQI. The following lemma allows us to reduce the cost of such

computation: 

LEMMA 2. Let A, B and X be the matrices of size n × n, m × m,

and m × n. Then

(A ⊗ B) vec(X) = vec(BXA
T),

where vec(X) denotes the vectorization of the matrix X formed

by stacking the columns of X into a single column vector. 

Applying Lemma 2 recursively, we can reduce the time

complexity to O([Σidi] Πidi). The storage complexity is also

reduced to O(Πidi + Σi ); this is mainly used to store the
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Fig. 2. Pr(Sr|QIr) vs. randomization parameters. QI: quasiidentifier.
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contingency table. 

B. Maximizing Utility with Privacy Constraints

The ultimate goal of publishing data is to maximize utility,

while the minimizing risk of attribute disclosure simulta-

neously. The utility of any data set, whether randomized or not,

is innately dependent on the tasks that one may perform on it.

Without a workload context, it is difficult to say whether a data

set is useful or not. This motivates us to focus on the data distri-

bution when evaluating the utility of a database, since many

data mining applications are based on the probability distribu-

tion of the data.

PROBLEM 1. Determine pi, i = 1, · · · , m, and ps to 

minimize E[d( , π)] s.t.  Pr(Sr|QIr) ≤ τ, pi ∈ (1/di, 1],

(10)

where E[d(.)] denotes the expectation of d(.) and d( , π)

denotes a certain distance between  and π.

We can set the privacy threshold formalize as the same pri-

vacy requirement of l-diversity (i.e., τ = 1/l ) to compare the

performance of different disguised schemes. That is, we would

determine the optimal randomization parameters (p1, p2, . . . , pm,

and ps) to maximize the utility, while ensuring that the sensitive

value of any individual involved in the data set cannot be cor-

rectly inferred by an attacker with probability more than 1/l. A

larger l leads to stronger privacy protection. In general, privacy

constraints may be flexible. For example, different individuals

may have different concerns about their privacy, so we can set

different thresholds for Pr(Sr|QIr). 

Problem 1 is a nonlinear optimization problem. In general,

we can solve it using optimization packages (e.g., trust region

algorithm [40]). In Section IV-A, we discussed how to effi-

ciently calculate the attribute disclosure of target individuals

(shown as constraints in PROBLEM 1). Next, we show how we

can efficiently calculate E , the expected Euclidean dis-

tance difference between the original data and the estimated

one. 

RESULT 2. When d( , π) is the squared Euclidean distance,

Problem 1 is equivalent to: determine pi, i = 1, · · · ,m, and ps to 

minimize ΠI  s.t. maxr Pr(Sr|QIr) ≤ τ, pi ∈ (1/di, 1].(11)

We briefly explain how we can derive this result and give its

detailed proof in the Appendix. When the distance is the

squared Euclidean distance, with Lemma (3) shown in the

Appendix, to minimize d( , π) is equivalent to minimize

trace(Σ) where Σ is the covariance matrix of the estimator of

cell values in the contingency table (shown in Equation 2). Cal-

culating trace(Σ) still involves high computational cost. How-

ever, when Pi has the specific form shown in (1), we can further

reduce the problem to minimizing Πi , and with Lemma 4,

we have

 = ,  = .

where 1 is the column vector whose cells are all equal to 1.

V. EMPIRICAL EVALUATION

We ran our experiments on the Adult Database from the UCI

data mining repository [41] in our evaluations. The same data-

base has been used in previous work on k-anonymity, l-diver-

sity, t-closeness, and anatomy [2-5]. The Adult Database contains

45,222 tuples from US census data and 14 attributes. Table 2 is

a summary description of the data including the attributes we

used, the number of distinct values for each attribute, and the

types of the attributes adopted in the evaluation.

It is expected that a good publication method should preserve

both privacy and data utility. We set different l values as privacy

disclosure thresholds. We adopt the following standard distance

measures to compare the difference of distributions between the

original and reconstructed data to quantify the utility. Given two

distributions P = (p1, p2, ..., pm), Q = (q1, q2, ..., qm), KL distance is

defined as dKL(P, Q) =  pi log  and χ2-distance is  (P, Q)

= . 

In our evaluation, we first investigate utility vs. privacy of

the randomization method in protecting attribute disclosure on

two aspects: 1) compare data utility among different scenarios,

and 2) the impact of cardinality upon data utility. Then, we

compare randomization with l-diversity and anatomy.
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Table 2. Description of the Adult data set used in the evaluation

Attribute Type Categories

Gender (G) QI 2

Race (R) QI 5

Education (E) QI 16

Marital-status (M) QI 7

Salary class (S) QI 2

Work-class (W) Sensitive 7

Occupation (O) Sensitive 14

QI: quasiidentifier.

Table 3. Randomization parameters pi for three cases of RR (data set
EMGRW)

RR-QI RR-S

l E M G R W

2 0.824 0.872 0.920 0.941 0.650

3 0.548 0.812 0.898 0.985 0.267

4 0.382 0.736 0.918 0.961 0.217

5 0.314 0.615 0.873 0.938 0.167

RR-Both

l E M G R W

2 0.824 0.872 0.920 0.941 1

3 0.573 0.821 0.913 0.973 0.955

4 0.428 0.780 0.926 0.953 0.871

5 0.353 0.688 0.902 0.953 0.813

E: education, M: martial-status, G: gender, R: race, W: workclass, RR:

randomized response, QI: quasiidentifier. 
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A. Randomization

We treated Education, Martial-status, Gender, and Race as

the quasi-identifier and used Workclass as the sensitive

attribute. We term this data set EMGRW. We distort only QI

attributes, or sensitive attribute S, or both in different applica-

tion scenarios for randomization. Table 3 shows the derived ran-

domization parameter p for three scenarios (RR-QI, RR-S, and

RR-Both). We set l = 2, 3, 4, 5. We can observe that more distor-

tions (p is away from 1) are needed to achieve better privacy

protections (when l is increased). We can also observe that pi for

QI attributes in RR-Both is generally closer to 1 than that in RR-

QI, because RR-Both could also distort the sensitive attribute in

addition to those QI attributes to achieve some given privacy

protection. Thus, a small magnitude of distortion is needed for

QI attributes in RR-Both.

Fig. 3 shows results on various distance measures. Naturally,

there is a tradeoff between minimizing utility loss and maximiz-

ing privacy protection. Fig. 3 indicates that the smaller the dis-

tance values, the smaller the difference between the distorted

and the original databases, and the better the utility of the dis-

torted database. We can observe that the utility loss (in terms of

distance differences) increases approximately linearly with the

increasing privacy protection across all three randomization

scenarios. RR-Both achieves the best in terms of utility preser-

vation, because we use the optimal randomization parameters

for both QI and the sensitive attribute.

As discussed in Section III, one advantage of the randomiza-

tion scheme is that the more data we have, the more accurate

reconstruction we can achieve. We generate four more data sets

with varied sizes by sampling r * N tuples from the Adult Data

randomly where N is the size of the original Adult data set and

we set r ∈ [0.5, 1.5, 2, 2.5] to investigate the impact of data size

upon the data utility of the randomized data. All four generated

data sets have the exact same distribution as the original one.

Fig. 4 shows the accuracy of reconstructed data distribution

when data size increases. We see that data utility is further

improved when more data are available.

B. Comparison to Other Models

We chose Education, Salary, Gender, Race as QI, and Occu-

pation as the sensitive attribute, similar to the settings of empir-

ical evaluations in [2, 5] to compare randomization scheme with

l-diversity and anatomy. We term this data set ESGRO. We did

not use the previous EMGRW data set, because l-diverse parti-

tions cannot be derived by the anatomy algorithm or entropy l-

diversity. As specified in Machanavajjhala et al. [2] and Xiao

and Tao [5], an l-diverse partition exists, if and only if at most

N/l records are associated with the same sensitive value, where

N is the cardinality of the data set. The data distribution of

attribute Work-class is much skewed and the frequency of one

value is much larger than the others. In this section, we focus on

the use of RR-QI to compare to those two group based models:

Fig. 3. Distances between  and π for three scenarios of RR (data set EMGRW). RR: randomized response, QI: quasiidentifier. π̂

Fig. 4. For RR-Both, distances between  and π decrease, as the data set size increases (data set EMGRW). RR: randomized response, QI: quasiidentifier. π̂



Limiting Attribute Disclosure in Randomization Based Microdata Release

Ling Guo et al. 177 http://jcse.kiise.org

l-diversity and anatomy, because the overall distribution of sen-

sitive attribute values is unchanged in both group based meth-

ods after anonymization and RR-QI after randomization.

Generalization approaches usually measure the utility syn-

tactically by the number of generalization steps applied to

quasi-identifiers [42], average size of quasi-identifier equiva-

lence classes [2], sum of squares of class sizes, or preservation

of marginals [3]. We further examine the utility preservation

from the perspective of answering aggregate queries, in addition

to the previous distribution distance measures, since the ran-

domization scheme is not based on generalization or suppres-

sion. We adopt query answering accuracy; the same metric is

used in Zhang et al. [4]. We also consider the variation of corre-

lations between the sensitive attribute and quasi-identifiers. We

used an implementation of the Incognito algorithm [3] to gener-

ate the entropy l-diverse tables and used the anatomy algorithm

in [5] in our experiments.

1) Distribution Distance: We compare data utility of recon-

structed probability distributions for different models according

to the distance measures. Fig. 5 shows distances between  and

π for anatomy, l-diversity and RR-QI on the data set ESGRO.

We can observe that randomization outperforms both anatomy

and l-diversity methods, because we can partially recover the

original data distribution in the randomization scheme, whereas

data distribution within each generalized equivalence class is

lost in l-diversity generalization and the relations between the

quasi-identifier table (QIT) and the sensitive table (ST) are also

lost in anatomy. 

Another observation is that data utility (in terms of distance

between original and reconstructed distributions) monotonically

decreases with the increment of the privacy thresholds (l) for

randomization and anatomy. This is naturally expected, because

more randomness needs to be introduced with the increment of

the privacy requirements for randomization and larger l in anat-

omy means that more tuples are included in each group, which

decreases the accuracy of the estimate for the distribution of the

original data. However, there is no similar monotonic trend in l-

diversity, because the generalization algorithm chooses different

attributes for generalization with various l values; this makes the

accuracy of the estimated distribution vary to different extents.

2) Query Answering Accuracy: The accuracy of answering

aggregate queries is one of the important aspects to evaluate the

utility of distorted data. We compare randomization against two

other anonymization approaches [3, 5] using the average rela-

tive error in the returned count values. For each count value

(corresponding to the number of records in a group), its relative

error is defined as |act − est|/act, where act is the actual count

value from the original data, and est is the estimate from the

reconstructed data for RR approaches or the anonymized data

for anonymization approaches. We consider two types of que-

ries in our evaluation.

- Base group-by query with the form:

SELECT A1,. . . , Am, S, COUNT(*) FROM data

π̂

Fig. 5. Distances between  and π for anatomy, l-diversity and RR-QI (randomized response-quasiidentifier; data set ESGRO). π̂

Fig. 6. Relative errors of queries for anatomy, l-diversity and RR-QI (randomized response-quasiidentifier; data set ESGRO). 
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WHERE A1 = i1 . . . Am = im AND S = is GROUP BY (A1, · · · ,

Am, S)

Where ik ∈ Ωk and is ∈ Ωs.

- Cube query with the form:

SELECT A1,· · · , Am, S, COUNT(*) FROM data

GROUP BY CUBE (A1, · · · , Am, S)

The base group-by query returns the number of records in

each group of (A1 = i1 . . . Am = im and S = is). Note that the total

number of groups is equal D = ds  di).

After running the base group-by query on the original data

and the reconstructed data or the anonymized data, we get the

count values of act and est, respectively. Fig. 6a shows the cal-

culated average relative errors of three methods (anatomy, l-

diversity, and RR-QI) with varied l (l = 1, · · · , 7). We use the

CUBE query to describe all the possible hierarchical aggregate

queries (In multidimensional jargon, a cube is a cross-tabulated

summary of detail rows. CUBE enables a SELECT statement to

calculate subtotals for all possible combinations of a group of

dimensions. It also calculates a grand total.). The CUBE query

returns aggregate values of all possible combinations of QI

attributes. We calculate the average relative error for each l = 1,

· · · , 7 and show the results in Fig. 6b. We can observe from Fig.

6a and 6b that randomization permits significantly more accu-

rate aggregate analysis than both l-diversity and anatomy, since

it can recover more accurate data distribution. Conversely, l-

diversity loses the data distribution of records within each gen-

eralized QI-group and anatomy loses correlations between the

QI attributes and the sensitive attribute S. 

3) Correlation Between Attributes: A good publishing

method should also preserve data correlation (especially

between QI and sensitive attributes). We use Uncertainty Coef-

ficient (U) to evaluate the correlation between two multi-cate-

gory variables:

. (12)

The uncertainty coefficient takes values between -1 and 1;

larger values represent a strong association between variables.

When the response variable has several possible categoriza-

tions, these measures tend to take smaller values, as the number

of categories increases. 

Tables 4 and 5 show correlation (uncertainty coefficient) val-

Πi 1=

m

U

ΣiΣjπij

πij

πi+π+j

--------------log

Σjπ+j π+jlog
-------------------------------------–=

Table 4. Variation of correlation (uncertainty coefficient) between pairs of
quasiidentifier (QI) attributes under different models (×10-2) (data set ESGRO)

Correlation QI vs. QI

E vs. S E vs. G E vs. R S vs. G S vs. R G vs. R

Original 11.54 0.68 1.92 4.12 1.07 1.08

l = 3 Anatomy 11.54 0.68 1.92 4.12 1.07 1.08

l-diversity 0 0 0 0 0 0

RR-QI 8.57 0.63 1.86 3.65 0.53 1.08

l = 4 Anatomy 11.54 0.68 1.92 4.12 1.07 1.08

l-diversity 9.18 0 0 0 0 0

RR-QI 8.05 0.58 1.29 3.37 0.45 1.07

l = 5 Anatomy 11.54 0.68 1.92 4.12 1.07 1.08

l-diversity 0 0 0.21 0 0 0

RR-QI 7.50 0.33 1.02 3.15 0.44 1.04

E: education, S: salary, G: gender, R: race, O: occupation.

Table 5. Variation of correlation (uncertainty coefficient) between
quasiidentifier (QI) and S under different models (×10-2) (data set ESGRO)

Correlation QI vs. S

E vs. O S vs. O G vs. O R vs. O

Original 9.90 2.74 4.40 0.57

l = 3 Anatomy 0.90 0.20 0.25 0.06

l-diversity 8.86 0 0 0

RR-QI 8.72 2.41 4.13 0.54

l = 4 Anatomy 0.46 0.12 0.08 0.02

l-diversity 7.91 2.74 0 0

RR-QI 8.33 2.27 4.01 0.51

l = 5 Anatomy 0.26 0.05 0.07 0.02

l-diversity 7.91 0 0 0.37

RR-QI 7.77 2.17 3.89 0.50

E: education, S: salary, G: gender, R: race, O: occupation.

Fig. 7. Average value of uncertainty coefficients among attributes for anatomy, l-diversity and RR-QI (randomized response-quasiidentifier; data set
ESGRO). 
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ues between each pair of attributes vary under three models

(anatomy, l-diversity and RR-QI) on the data set ESGRO. We

vary l from 2 to 7. We only include correlation values for l = 3,

4, and 5 due to the space limitation. We use the attribute pair of

Salary (S, one QI attribute) and Occupation (O, the sensitive

attribute) as an example (the column with bold fonts in Table 5)

to study how correlations between QI and S change. The origi-

nal uncertainty coefficient is 2.74 × 10-2. RR-QI well achieves

correlation preservation, i.e., 2.41, 2.27, and 2.17 (×10-2) for l =

3, 4, and 5 respectively. Conversely, the uncertainty coefficient

value under anatomy is only 0.20, 0.12, and 0.05 (×10-2) corre-

spondingly. For l-diversity, it achieves zero correlation preser-

vation when l = 3, and 5 while it perfectly achieves correlation

preservation when l = 4, because the Salary attribute is general-

ized to “All” when l = 3, and 5, while it is unchanged across all

QI-groups when l = 4. l-diversity in general cannot preserve

correlation well, because it is intractable to predict which QI

attributes will be generalized in l-diversity.

Fig. 7 shows the average value of uncertainty coefficients

among attributes for anatomy, l-diversity and RR-Both on the

data set ESGRO. As shown in Fig. 7a, randomization achieves

the best correlation preservation between the sensitive attribute

and quasiidentifiers across all privacy thresholds. Fig. 7b also

clearly shows that randomization better preserves correlation

among quasi-identifiers than l-diversity does. Please note that

anatomy can best achieve the correlation among quasi-identifi-

ers, since it does not change values of quasi-identifiers.

 

C. Evaluation Summary 

In summary, the evaluation shows that randomization can

better preserve utility (in terms of distribution reconstruction,

accuracy of aggregate query answering, and correlation among

attributes) under the same privacy requirements. Utility loss is

significantly smaller than that of generalization or anatomy

approaches. Furthermore, the effectiveness of randomization

can be further improved when more data are available. The

evaluation also showed that the randomization approach can

further improve the accuracy of the reconstructed distribution

(and hence utility preservation) when more data are available,

while generalization and anatomy approaches do not have this

property.

VI. CONCLUSION

In this paper, we investigated attribute disclosure in the case

of linking attacks. We compared randomization to other anony-

mization schemes (l-diversity and anatomy) in terms of utility

preservation, with the same privacy protection requirements.

Our experimental evaluations showed randomization signifi-

cantly outperforms generalization, i.e., achieving better utility

preservation, while yielding the same privacy protection.

There are several other avenues for future work. We aim to

extend our research to handle multiple sensitive attributes. In

this paper, we limit our scope, as attackers have no knowledge

about the sensitive attribute of specific individuals in the popu-

lation and/or the table. In practice, this may not be true, since

the attacker may have instance-level background knowledge

(e.g., the attacker might know that the target individual does not

have cancer; or the attacker might know complete information

about some people in the table other than the target individual.)

or partial demographic background knowledge about the distri-

bution of sensitive and insensitive attributes in the population.

Different forms of background knowledge have been studied in

privacy preservation data publishing recently. For example, the

formal language [22, 24] and maximum estimation constraints

[43] are proposed to express background knowledge of attack-

ers. We will investigate privacy disclosure under those back-

ground knowledge attacks. We should note that randomization

may not outperform generalization in all cases, especially when

some specific background knowledge is utilized in the adver-

sary model, because generalization is truthful and the ambiguity

is between true tuples (e.g., individual a and b are indistinguish-

able), whereas randomization can be regarded as adding noise,

and noise can be removed when some background knowledge is

known.

We will continue our study of further reducing computation

overhead of the randomization approach. The execution time of

randomization is usually slower than l-diversity and anatomy.

For example, the execution time of our RR-Both approach on

the Adult data sets was 10 times slower than for generalization

approaches due to the heavy cost of determining the optimal

distortion parameters with attribute disclosure constraints, espe-

cially when the attribute domains are large. One advantage of

randomization is that the reconstruction accuracy increases

when more data are available. Guo et al. [10] preliminarily con-

ducted theoretical analysis on how the randomization process

affects the accuracy of various measures (e.g., support, confi-

dence, and lift) in market basket data analysis. In our future

work, we will study the accuracy of reconstruction in terms of

bias and variance of estimates in randomizing general micro-

data. 

Finally, we are interested in comparing our randomization

approaches to most recently developed generalization approaches

(e.g., the accuracy-constrained l-diversification method in [14]).

We are also interested in combining the derived optimal ran-

domization schemes with the small domain randomization [38]

to further improve utility preservation. It is our belief that

extensive studies on comparing different privacy preservation

data publishing approaches are crucial.
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Appendix 1. Proof of Property 1

We start with applying RR to the sensitive attribute, Pr( r =

QIr) = 1. Without loss of generality, we assume that Sr = 1. Com-

bine other categories 0, 2, . . . , ds − 1 into a new categories, and

still use 0 to denote the new category. To make the notation simple,

we simply write  as π1 and  as π0 in this proof, then π1 =

1 − π0. Such adjustment does not change the reconstruction

probability Pr( r = Sr = 1|QIr). After the adjustment, the ran-

domization probabilities are given by

Pr( r = 1|Sr = 1) = ps, Pr( r = 1|Sr = 0) = qs. (13)

By definition, the posterior probabilities are given by

Pr(Sr = 1| r = 1) = , (14)

Pr(Sr = 1| r = 0) = . (15)

Combining (13), (14), and (15), we have

Pr(Sr = 1|QIr) = π1 Pr( r = Sr = 1|QIr) 

= π1 ( r = i|Sr = 1) Pr(Sr = 1| r = i)

= (16)

Taking the derivative with respect to ps, we have (16) is minimized

when ps = , and the minimal value is  = . Following

similar strategies, we can prove the general case when we ran-

domize both QI and S.

Appendix 2. Proof of Result 2

LEMMA 3. If d( , π) = , we have E[d( , π)] =

trace(Σ), where Σ is the covariance matrix of  shown in (2). 

PROOF. We know that  asymptotically follows the normal

distribution N(π, Σ). Let Σ = XΛXT be the eigen-decomposition

of Σ, where Λ = diag(λ1, . . . , λn) and XTX = I. Let η = XT (  −
π), then η is normally distributed with E(η) = 0 and 

Cov(η) = XT Cov(  − π)X = XTΣX = Λ. 

Notice that Λ is a diagonal matrix, and hence Cov(ηiηj) = 0 if

i ≠ j, and Var(ηi) = λi, i.e., ηi independently follows the normal

distribution N(0, λi). Therefore, we have:

E = E[(  − π)T(  − π)]= E[(Xη)T (Xη)]

= E(ηT
η) = E(Σi ) = ΣiE( )

= Σi{Var(ηi) + [E(ηi)]
2}

= Σiλi = trace(Λ) = trace(Σ).

The last equality is due to the fact that

trace(Σ) = trace(XΛX
T) = trace(ΛX

T
X) = trace(Λ).

We proved the lemma.

LEMMA 4. Let Pi be the randomization matrix specified in

(1). When pi ≠ , we have

 = (I − qi11
T),  =  + 1.

where 1 is the column vector, whose cells all equal 1.

PROOF. We can re-write Pi as follows:

Pi = (pi − qi)I + qi11
T = (pi − qi)(I + 11

T)

With qi = , 1T
1 = di, and the binomial inverse theorem

[45], we can immediately get , and  can be directly

calculated from .

LEMMA 5. Let (P−1)i denote the i-th column (or row) of P−1.

Then, for any i = 1, 2, . . . , D, we have  = .
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PROOF. With Lemma 4, we observe that every row (or col-

umn) of  has the same components, except for a change of

order. Since P−1 =  ⊗ · · · ⊗  ⊗ , we can also con-

clude that all rows (or columns) of P−1 have the same compo-

nents, except for a change of order. Therefore, for all i’s,

 = .

Next, we prove the main result. With Lemma 3, when the

distance is the squared Euclidean distance, to minimize E[d( ,

π)] is equivalent to minimize trace(Σ). With (2), we have

trace(Σ) = trace

 trace

= trace

= 

= (with Lemma 5) 

  = .

Notice that the constraint function is an increasing function

of pi, the optimal solution must occur when the equality stands,

and we have proved the result.

Pi

1–

Pi

1–
Pm

1–
Ps

1–

P
1–( )i F

2 1

D
---- P

1–
F

2

π̂

1

N
---- P

1–
Pπ( )δ P

T( )
1–

ππT
–[ ]

⎩ ⎭
⎨ ⎬
⎧ ⎫

∝ P
1–

Pπ( )δ P
T( )

1–
[ ]

Pπ( )δ P
1–( )

T
P

1–[ ]

Pπ( )i P
1–( )i F

2

i 1=

D

∑

P
1–( )1 F

2
Pπ( )i

i 1=

D

∑

∝ P
1–
F

2
Pi

1–

F

2

i

∏

Xiaowei Ying

Xiaowei Ying obtained his Ph.D. degree in Information Technology from the University of North Carolina at Charlotte in
2011. He received his BA degree in Mathematics from Fudan University of China in 2006. His major research interests
include privacy-preservation data mining and social network analysis.

Ling Guo

Ling Guo obtained her Ph.D. degree in Information Technology from the University of North Carolina at Charlotte in
2010. She received her BS degree in Electronics Engineering from Shan Dong University of China in 1997. Her major
research interests include knowledge discovery and privacy-preservation data mining.

Xintao Wu

Xintao Wu is an Associate Professor in the Department of Software and Information Systems at the University of North
Carolina at Charlotte, USA. He obtained his Ph.D. degree in Information Technology from George Mason University in
2001. He received his BS degree in Information Science from the University of Science and Technology of China in 1994,
an ME degree in Computer Engineering from the Chinese Academy of Space Technology in 1997. His major research
interests include data mining and knowledge discovery, data privacy and security.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [612.000 792.000]
>> setpagedevice


